DOI QR코드

DOI QR Code

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Song, Shangbin (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Xiang, Xing (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Hu, Qing (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Zhang, Chi (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Xia, Ziwen (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Xu, Yinghui (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Zha, Wenping (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Li, Junyang (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Gonzale, Paulina Mercedes (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Han, Young-Hwan (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology) ;
  • Chen, Fei (State Key Lab of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology)
  • Received : 2019.01.07
  • Accepted : 2019.01.27
  • Published : 2019.03.31

Abstract

Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

Keywords

References

  1. R. P. Luo, W. Q. Lyu, and K. C. Wen, "Overview of Graphene as Anode in Lithium-Ion Batteries," J. Electron. Sci. Technol., 16 [1] 57-68 (2018).
  2. J. B. Goodenough and K. S. Park, "The Li-Ion Rechargeable Battery: A Perspective," J. Am. Chem. Soc., 135 [4] 1167-76 (2013). https://doi.org/10.1021/ja3091438
  3. J. B. Bates, N. J. Dudney, and B. J. Neudecker, "Thin-Film Lithium and Lithium-Ion Batteries," Solid State Ionics, 135 33-45 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
  4. J. M. Tarascon and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, 414 359-67 (2001). https://doi.org/10.1038/35104644
  5. C. Sun, J. Liu, and Y. Gong, "Recent Advances in All-Solid-State Rechargeable Lithium Batteries," Nano Energy, 33 363-86 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028
  6. C. Cao, Z. Li, and X. L. Wang, "Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries," Front. Energy Res., 2 25 (2014).
  7. F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite Polymer Electrolytes for Lithium Batteries," Nature, 394 456-58 (1998). https://doi.org/10.1038/28818
  8. H. Aono, N. Imanaka, and G. Y. Adachi, "High $Li^+$ Conducting Ceramics," Acc. Chem. Res., 27 [9] 265-70 (1994). https://doi.org/10.1021/ar00045a002
  9. P. Knauth, "Inorganic Solid Li Ion Conductors: An Overview," Solid State Ionics, 180 [14-16] 911-16 (2009). https://doi.org/10.1016/j.ssi.2009.03.022
  10. K. Arbi, M. G. Lazarraga, D. B. H. Chehimi, M. Ayadi-Trabelsi, J. M. Rojo, and J. Sanz, "Lithium Mobility in $Li_{1.2}Ti_{1.8}R_{0.2}(PO_4)_3$ Compounds (R = Al, Ga, Sc, In) as Followed by NMR and Impedance Spectroscopy," Chem. Mater., 16 [2] 255-62 (2004). https://doi.org/10.1021/cm030422i
  11. O. I. V'yunov, O. N. Gavrilenko, and L. L. Kovalenko, "Intercalation Processes Influence the Structure and Electrophysical Properties of Lithium-Conducting Compounds Having Defect Perovskite Structure," Russ. J. Inorg. Chem., 56 [1] 93-8 (2011). https://doi.org/10.1134/S0036023611010232
  12. Y. Inaguma and M. Nakashkima, "A Rechargeable Lithium-Air Battery Using a Lithium Ion - Conducting Lanthanum Lithium Titanate Ceramics as an Electrolyte Separator," J. Power Sources, 228 250-55 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.098
  13. A. Mei, X. L. Wang, and J. L. Lan, "Role of Amorphous Boundary Layer in Enhancing Ionic Conductivity of Lithium-Lanthanum Titanate Electrolyte," Electrochim. Acta, 55 [8] 2958-63 (2010). https://doi.org/10.1016/j.electacta.2010.01.036
  14. X. Guo, P. S. Maram, and A. Navrotsky, "A Correlation between Formation Enthalpy and Ionic Conductivity in Perovskite-Structured $Li_{3x}La_{0.67−x}TiO_3$ Solid Lithium Ion Conductors," J. Mater. Chem. A, 5 [25] 12951- 57 (2017). https://doi.org/10.1039/C7TA02434G
  15. R. Qin, Y. Wei, and T. Zhai, "LISICON Structured $Li_3V_2(PO_4)_3$ with High Rate and Ultralong Life for Low-Temperature Lithium-Ion Batteries," J. Mater. Chem. A, 6 [20] 9737-46 (2018). https://doi.org/10.1039/C8TA01124A
  16. V. Thangadurai and W. Weppner, "Recent Progress in Solid Oxide and Lithium Ion Conducting Electrolytes Research," Ionics, 12 [1] 81-92 (2006). https://doi.org/10.1007/s11581-006-0013-7
  17. Y. Su, J. Falgenhauer, and A. Polity, "LiPON Thin Films with High Nitrogen Content for Application in Lithium Batteries and Electrochromic Devices Prepared by RF Magnetron Sputtering," Solid State Ionics, 282 63-9 (2015). https://doi.org/10.1016/j.ssi.2015.09.022
  18. J. Jurgen and W. G. Zeier, "A Solid Future for Battery Development," Nat. Energy, 1 [9] 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
  19. Y. Kato, S. Hori, and T. Saito, "High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors," Nat. Energy, 1 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
  20. J. Saienga and S. W. Martin, "The Comparative Structure, Properties, and Ionic Conductivity of $LiI^+$ $Li_2S^+$ $GeS_2$ Glasses Doped with $Ga_2S_3$ and $La_2S_3$," J. Non-Cryst. Solids, 354 [14] 1475-86 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.058
  21. P. Zhao, Y. Wen, and J. Cheng, "A Novel Method for Preparation of High Dense Tetragonal $Li_7La_3Zr_2O_{12}$," J. Power Sources, 344 56-61 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.088
  22. R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type $Li_7La_3Zr_2O_{12}$," Angew. Chem., Int. Ed., 46 [41] 7778-81 (2007). https://doi.org/10.1002/anie.200701144
  23. X. Han, Y. Gong, and K. Fu, "Negating Interracial Impedance in Garnet-Based Solid-State Li Metal Batteries," Nat. Mater., 16 [5] 572-79 (2016). https://doi.org/10.1038/nmat4821
  24. M. Abreu-Sepulveda, "Synthesis and Characterization of Substituted Garnet and Perovskite-Based Lithium-Ion Conducting Solid Electrolytes," Ionics, 22 [3] 317-25 (2016). https://doi.org/10.1007/s11581-015-1556-2
  25. C. Deviannapoorani, L. S. Shankar, and S. Ramakumar, "Investigation on Lithium Ion Conductivity and Structural Stability of Yttrium-Substituted $Li_7La_3Zr_2O_{12}$," Ionics, 22 [8] 1281-89 (2016). https://doi.org/10.1007/s11581-016-1674-5
  26. Y. Li, "W-Doped $Li_7La_3Zr_2O_{12}$ Ceramic Electrolytes for Solid State Li-Ion Batteries," Electrochim. Acta, 180 [1] 37-42 (2015). https://doi.org/10.1016/j.electacta.2015.08.046
  27. J. Li, Y. Jiang, and H. Zhou, "Effects of Sintering Aids Al2O3 and Y2O3 on the Lithium Ion Conductivity of Solid Lithium Ion Electrolyte LLZO," Mater. Sci. Eng. Powder Metal., 23 [2] 199-205 (2018).
  28. S. Yu and D. J. Siegel, "Grain Boundary Contributions to Li-ion Transport in the Solid Electrolyte $Li_7La_3Zr_2O_{12}$ (LLZO)," Chem. Mater., 29 [22] 9639-47 (2018). https://doi.org/10.1021/acs.chemmater.7b02805
  29. V. Thangadurai, H. Kaack, and W. J. F. Weppner, "Novel Fast Lithium Ion Conduction in Garnet-Type $Li_5La_3M_2O_{12}$ (M = Nb, Ta)," J. Am. Ceram. Soc., 86 [3] 437-40 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
  30. R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type $Li_7La_3Zr_2O_{12}$," Angew. Chem., Int. Ed., 46 [41] 7778-81 (2007). https://doi.org/10.1002/anie.200701144
  31. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, "Crystal Structure of Fast Lithium-Ion-Conducting Cubic $Li_7La_3Zr_2O_{12}$," Chem. Lett., 40 [1] 60-2 (2011). https://doi.org/10.1246/cl.2011.60
  32. M. P. O'Callaghan and E. J. Cussen, "The Structure of the Lithium-Rich Garnets $Li_6SrLa_2M_2O_{12}$ and $Li_{6.4}Sr_{1.4}La_{1.6}M_2O_{12}$ (M = Sb, Ta)," Solid State Sci., 10 [4] 390-95 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.036
  33. J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, "Synthesis and Structure Analysis of Tetragonal $Li_7La_3Zr_2O_{12}$ with the Garnet-Related Type Structure," J. Solid State Chem., 182 [8] 2046-52 (2009). https://doi.org/10.1016/j.jssc.2009.05.020
  34. J. Percival, E. Kendrick, R. I. Smith, and P. R. Slater, "Cation Ordering in Li Containing Garnets: Synthesis and Structural Characterisation of the Tetragonal System, $Li_7La_3Sn_2O_{12}$," Dalton Transactions, [26] 5177-81 (2009). https://doi.org/10.1039/b907331k
  35. J. Awaka, N. Kijima, K. Kataoka, H. Hayakawa, K. Ohshima, and J. Akimoto, "Neutron Powder Diffraction Study of Tetragonal $Li_7La_3Hf_2O_{12}$ with the Garnet-Related Type Structure," J. Solid State Chem., 183 [1] 180-85 (2010). https://doi.org/10.1016/j.jssc.2009.10.030
  36. M. Matsui, K. Sakamoto, K. Takahashi, A. Hirano, Y. Takeda, O. Yamamoto, and N. Imanishi, "Phase Transformation of the Garnet Structured Lithium Ion Conductor: $Li_7La_3Zr_2O_{12}$," Solid State Ionics, 262 155-59 (2014). https://doi.org/10.1016/j.ssi.2013.09.027
  37. N. Bernstein, M. D. Johannes, and K. Hoang, "Origin of the Structural Phase Transition in $Li_7La_3Zr_2O_{12}$," Phys. Rev. Lett., 109 [20] 1-5 (2012).
  38. M. Klenk and W. Lai, "Local Structure and Dynamics of Lithium Garnet Ionic Conductors: Tetragonal and Cubic $Li_7La_3Zr_2O_{12}$," Phys. Chem. Chem. Phys., 17 [14] 8758-68 (2015). https://doi.org/10.1039/c4cp05690f
  39. M. J. Klenk and W. Lai, "Finite-Size Effects on the Molecular Dynamics Simulation of Fast-Ion Conductors: A Case Study of Lithium Garnet Oxide $Li_7La_3Zr_2O_{12}$," Solid State Ionics, 289 143-49 (2016). https://doi.org/10.1016/j.ssi.2016.03.002
  40. S. Adams and R. P. Rao, "Ion Transport and Phase Transition in $Li_{7−x}La_3(Zr_{2−x}M_x)O_{12}$ (M = $Ta^{5+}$, $Nb^{5+}$, x = 0, 0.25)," J. Mater. Chem., 22 [4] 1426-34 (2012). https://doi.org/10.1039/c1jm14588f
  41. F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen, and L. Zhang, "Origin of the Phase Transition in Lithium Garnets," J. Phys. Chem. C, 122 [4] 1963-72 (2018). https://doi.org/10.1021/acs.jpcc.7b10911
  42. K. Meier, T. Laino, and A. Curioni, "Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations," J. Phys. Chem. C, 118 [13] 6668-79 (2014). https://doi.org/10.1021/jp5002463
  43. R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, and K. Kanamura, "Concerted Migration Mechanism in the Li Ion Dynamics of Garnet- Type $Li_7La_3Zr_2O_{12}$," Chem. Mater., 25 [3] 425-30 (2013). https://doi.org/10.1021/cm303542x
  44. C. Chen, Z. Lu, and F. Ciucci, "Data Mining of Molecular Dynamics Data Reveals Li Diffusion Characteristics in Garnet $Li_7La_3Zr_2O_{12}$," Sci. Rep., 7 40769 (2017). https://doi.org/10.1038/srep40769
  45. Y. Zhang, F. Chen, and T. Rong, "Field Assisted Sintering of Dense Al-Substituted Cubic Phase $Li_7La_3Zr_2O_{12}$ Solid Electrolytes," J. Power Sources, 268 [3] 960-64 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.148
  46. M. Botros, R. Djenadic, and O. Clemens, "Field Assisted Sintering of Fine-Grained $Li_{7-3x}La_3Zr_2Al_xO_{12}$ Solid Electrolyte and the Influence of the Microstructure on the Electrochemical Performance," J. Power Sources, 309 108-15 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.086
  47. Y. Zhang, F. Chen, and R. Tu, "Effect of Lithium Ion Concentration on the Microstructure Evolution and its Association with the Ionic Conductivity of Cubic Garnet- Type Nominal $Li_7Al_{0.25}La_3Zr_2O_{12}$ Solid Electrolytes," Solid State Ionic, 284 53-60 (2015). https://doi.org/10.1016/j.ssi.2015.11.014
  48. Y. Zhang, J. Cai, and F. Chen, "Preparation of Cubic $Li_{7}- La_{3}Zr_{2}O_{12}$ Solid Electrolyte Using a Nano-Sized Core-Shell Structured Precursor," J. Alloys Compd., 644 793-98 (2015). https://doi.org/10.1016/j.jallcom.2015.05.085
  49. C. Shao, H. Liu, and Z. Yu, "Structure and Ionic Conductivity of Cubic $Li_7La_3Zr_2O_{12}$ Solid Electrolyte Prepared by Chemical Co-Precipitation Method," Solid State Ionics, 287 13-6 (2016). https://doi.org/10.1016/j.ssi.2016.01.042
  50. T. Yang, Z. D. Gordon, and Y. Li, "Nanostructured Garnet-Type Solid Electrolytes for Lithium Batteries: Electrospinning Synthesis of $Li_7La_3Zr_2O_{12}$ Nanowires and Particle Size-Dependent Phase Transformation," J. Phys. Chem. C, 119 [27] 14947-53 (2015). https://doi.org/10.1021/acs.jpcc.5b03589
  51. R. Djenadic, M. Botros, and C. Benel, "Nebulized Spray Pyrolysis of Al-Doped $Li_7La_3Zr_2O_{12}$ Solid Electrolyte for Battery Applications," Solid State Ionics, 263 [10] 49-56 (2014). https://doi.org/10.1016/j.ssi.2014.05.007
  52. E. Rangasamy, J. Wolfenstine, and J. Sakamoto, "The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition $Li_{7-}La_3Zr_2O_{12}$," Solid State Ionics, 206 28-32 (2012). https://doi.org/10.1016/j.ssi.2011.10.022
  53. K. Liu, J. T. Ma, and C. A. Wang, "Excess Lithium Salt Functions More than Compensating for Lithium Loss when Synthesizing $Li_{6.5}La_3Ta_{0.5}Zr_{1.5}O_{12}$ in Alumina Crucible," J. Power Sources, 260 109-14 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.065
  54. J. L. Allen, J. Wolfenstine, and E. Rangasamy, "Effect of Substitution (Ta, Al, Ga) on the Conductivity of $Li_{7-}La_3Zr_2O_{12}$," J. Power Sources, 206 [1] 315-19 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.131
  55. J. M. Lee, T. Kim, and S. W. Baek, "High Lithium Ion Conductivity of $Li_7La_3Zr_2O_{12}$ Synthesized by Solid State Reaction," Solid State Ionics, 258 [5] 13-7 (2014). https://doi.org/10.1016/j.ssi.2014.01.043
  56. Y. Li, J. T. Han, and C. Wang, "Optimizing $Li^+$ Conductivity in a Garnet Framework," J. Mater. Chem., 22 [30] 15357-61 (2012). https://doi.org/10.1039/c2jm31413d
  57. J. Gai, E. Zhao, "Improving the Li-Ion Conductivity and Air Stability of Cubic $Li_7La_3Zr_2O_{12}$ by the Co-Doping of Nb, Y," J. Eur. Ceram. Soc., 38 [4] 1673-78 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.002
  58. J. F. Wu, E. Y. Chen, and Y. Yu, "Gallium-Doped $Li_7La_3Zr_2O_{12}$ Garnet-Type Electrolytes with High Lithium-Ion Conductivity," ACS Appl. Mater. Interfaces, 9 [2] 1542-52 (2017). https://doi.org/10.1021/acsami.6b13902
  59. Y. Q. Li, Z. Wang, and C. L. Li, "Densification and Ionic-Conduction Improvement of Lithium Garnet Solid Electrolytes by Flowing Oxygen Sintering," J. Power Sources, 248 642-46 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.140
  60. S. Ohta, T. Kobayashi, and T. Asaoka, "High Lithium Ionic Conductivity in the Garnet-Type Oxide $Li_{7-X}La_3(Zr_{2-X}Nb_X)O_{12}$ (X=0-2)," J. Power Sources, 196 [6] 3342-45 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.089
  61. R. Murugan, S. Ramakumar, and N. Janani, "High Conductive Yttrium Doped $Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnet," Electrochem. Commun., 13 [12] 1373-75 (2011). https://doi.org/10.1016/j.elecom.2011.08.014
  62. L. Dhivya, N. Janani, B. Palanivel, and R. Murugan, "$Li^+$ Transport Properties of W Substituted $Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnets," AIP. Adv., 3 [8] 82115-21 (2013). https://doi.org/10.1063/1.4818971
  63. S. Ramakumar, L. Satyanarayana, S. V. Manorama, and R. Murugan, "Structure and $Li^+$ Dynamics of Sb-Doped $Li_7La_3Zr_2O_{12}$ Fast Lithium Ion Conductors," Phys. Chem. Chem. Phys., 15 [27] 11327-38 (2013). https://doi.org/10.1039/c3cp50991e
  64. C. Deviannapoorani, L. Dhivya, and S. Ramakumar, "Lithium Ion Transport Properties of High Conductive Tellurium Substituted $Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnets," J. Power Sources, 240 18-25 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.166
  65. C. Deviannapoorani, S. Ramakumar, and N. Janani, "Synthesis of Lithium Garnets from $La_2Zr_2O_7$ Pyrochlore," Solid State Ionics, 283 123-30 (2015). https://doi.org/10.1016/j.ssi.2015.10.006
  66. D. Wang, G. Zhong, and W. K. Pang, "Toward Understanding the Lithium Transport Mechanism in Garnettype Solid Electrolytes: $Li^+$ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites," Chem. Mater., 27 [19] 6650-59 (2015). https://doi.org/10.1021/acs.chemmater.5b02429
  67. D. Rettenwander, R. Wagner, and A. Reyer, "Interface Instability of Fe-Stabilized $Li_7La_3Zr_2O_{12}$ versus Li Metal," J. Phys. Chem. C, 122 [7] 3780−85 (2018). https://doi.org/10.1021/acs.jpcc.7b12387
  68. A. R. Yoo, S. A. Yoon, and Y. S. Kim, "Comparative Study on the Synthesis of Al-Doped $Li_{6.2}La_3Zr_2O_{12}$ Powder as a Solid Electrolyte Using Sol-Gel Synthesis and Solid-State Processing," J. Nanosci. Nanotechnol., 16 [11] 11662-68 (2016). https://doi.org/10.1166/jnn.2016.13570
  69. H. Xie, Y. Li, and J. B. Goodenough, "Low-Temperature Synthesis of $Li_7La_3Zr_2O_{12}$ with Cubic Garnet-Type Structure," Mater. Res. Bull., 47 [5] 1229-32 (2012). https://doi.org/10.1016/j.materresbull.2012.01.027
  70. I. Kokal, M. Somer, and P. H. L. Notten, "Sol-Gel Synthesis and Lithium Ion Conductivity of $Li_7La_3Zr_2O_{12}$ with Garnet-Related Type Structure," Solid State Ionic, 185 [1] 42-46 (2011). https://doi.org/10.1016/j.ssi.2011.01.002
  71. J. Sakamoto, E. Rangasamy, and H. Kim, "Synthesis of Nano-Scale Fast Ion Conducting Cubic $Li_7La_3Zr_2O_{12}$," Nanotechnology, 24 [42] 424005 (2013). https://doi.org/10.1088/0957-4484/24/42/424005
  72. Y. Shimonishi, A. Toda, and Z. Tao, "Synthesis of Garnet- Type $Li_{7−x}La_3Zr_2O_{12−1/2x}$ and its Stability in Aqueous Solutions," Solid State Ionics, 183 [1] 48-53 (2011). https://doi.org/10.1016/j.ssi.2010.12.010
  73. Y. Jin and P. J. Mcginn. "Al-Doped $Li_7La_3Zr_2O_{12}$ Synthesized by a Polymerized Complex Method," J. Power Sources, 196 [20] 8683-87 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065
  74. Y. Li, J. T. Han, and C. A. Wang, "Ionic Distribution and Conductivity in Lithium Garnet $Li_7La_3Zr_2O_{12}$," J. Power Sources, 209 [4] 278-81 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.100
  75. A. A. Raskovalov, E. A. Il'Ina, and B. D. Antonov, "Structure and Transport Properties of $Li_7La_3Zr_{2-0.75x}Al_xO_{12}$ Superionic Solid Electrolytes," J. Power Sources, 238 48-52 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.049
  76. R. Takano, K. Tadanaga, and A. Hayashi, "Low Temperature Synthesis of Al-Doped $Li_7La_3Zr_2O_{12}$ Solid Electrolyte by a Sol-Gel Process," Solid State Ionics, 255 [2] 104-7 (2014). https://doi.org/10.1016/j.ssi.2013.12.006
  77. N. Rosenkiewitz, J. Schuhmacher, and M. Bockmeyer, "Nitrogen-Free Sol-Gel Synthesis of Al-Substituted Cubic Garnet $Li_7La_3Zr_2O_{12}$ (LLZO)," J. Power Sources, 278 104-8 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.066
  78. C. H. Lee, G. J. Park, and J. H. Choi, "Low Temperature Synthesis of Garnet Type Solid Electrolyte by Modified Polymer Complex Process and its Characterization," Mater. Res. Bull., 83 309-15 (2016). https://doi.org/10.1016/j.materresbull.2016.02.040
  79. T. Takeuchi, H. Kageyama, and K. Nakanishi, "All-Solid-State Lithium Secondary Battery with $Li_2S-C$ Composite Positive Electrode Prepared by Spark," J. Electrochem. Soc., 157 [11] A1196 (2010). https://doi.org/10.1149/1.3486083
  80. R. Djenadic, M. Botros, and C. Benel, "Nebulized Spray Pyrolysis of Al-Doped $Li_7La_3Zr_2O_{12}$ Solid Electrolyte for Battery Applications," Solid State Ionics, 263 49-56 (2014). https://doi.org/10.1016/j.ssi.2014.05.007
  81. X. P. Wang, Y. Xia, J. Hu, Y. P. Xia, Z. Zhuang, L. J. Guo, H. Lu, T. Zhang, and Q. F. Fang, "Phase Transition and Conductivity Improvement of Tetragonal Fast Lithium Ionic Electrolyte $Li_7La_3Zr_2O_{12}$," Solid State Ionics, 253 [12] 137-42 (2013). https://doi.org/10.1016/j.ssi.2013.09.029
  82. J. Wolfenstine, J. Ratchford, and E. Rangasamy, "Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic $Li_7La_3Zr_2O_{12}$," Mater. Chem. Phys., 134 [2-3] 571-75 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.054
  83. Y. Zhang, F. Chen, and J. Li, "Regulation Mechanism of Bottleneck Size on $Li^+$, Migration Activation Energy in Garnet-Type $Li_7La_3Zr_2O_{12}$," Electrochim. Acta, 261 137-42 (2018). https://doi.org/10.1016/j.electacta.2017.12.133
  84. E. Rangasamy, J. Wolfenstine, and J. Sakamoto, "The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition $Li_{7}-La_3Zr_2O_{12}$," Solid State Ionics, 206 [1] 28-32 (2012). https://doi.org/10.1016/j.ssi.2011.10.022
  85. J. Wolfenstine, J. Sakamoto, and J. L. Allen, "Electron Microscopy Characterization of Hot-Pressed Al Substituted $Li_7La_3Zr_2O_{12}$," J. Mater. Sci., 47 [10] 4428-31 (2012). https://doi.org/10.1007/s10853-012-6300-y
  86. A. Düvel and A. Kuhn, "Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped $Li_7La_3Zr_2O_{12}$ Crystallizing with Cubic Symmetry," J. Phys. Chem. C, 116 [29] 15192-202 (2012). https://doi.org/10.1021/jp301193r
  87. N. Bernstein, M. D. Johannes, K. Hoang, "Origin of the Structural Phase Transition in $Li_7La_3Zr_2O_{12}$," Phys. Rev. Lett., 109 [20] 205702 (2012). https://doi.org/10.1103/physrevlett.109.205702
  88. Y. Jin and P. J. Mcginn, "Al-doped $Li_7La_3Zr_2O_{12}$ Synthesized by a Polymerized Complex Method," J. Power Sources, 196 [20] 8683-87 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065
  89. J. Wolfenstine, J. Ratchford, and E. Rangasamy, "Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic $Li_7La_3Zr_2O_{12}$," Mater. Chem. Phys., 134 [2-3] 571-75 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.054
  90. J. F. Wu, E. Y. Chen, and Y. Yu, "Gallium-Doped $Li_7La_3Zr_2O_{12}$ Garnet-Type Electrolytes with High Lithium-Ion Conductivity," ACS Appl. Mater. Interface, 9 [2] 1542-52 (2017). https://doi.org/10.1021/acsami.6b13902
  91. D. Rettenwander, C. A. Geiger, and G. Amthauer, "Synthesis and Crystal Chemistry of the Fast Li-Ion Conductor $Li_7La_3Zr_2O_{12}$ Doped with Fe," Inorg. Chem., 52 [14] 8005-9 (2013). https://doi.org/10.1021/ic400589u
  92. D. Rettenwander, C. A. Geiger, and M. Tribus, "The Solubility and Site Preference of $Fe^{3+}$ in $Li_{7−3x}Fe_xLa_3Zr_2O_{12}$ Garnets," J. Solid State Chem., 119 266-71 (2015).
  93. D. Rettenwander, "Interface Instability of Fe-Stabilized $Li_7La_3Zr_2O_{12}$ versus Li Metal," J. Phys. Chem. C, 122 [7] 3780-85 (2018). https://doi.org/10.1021/acs.jpcc.7b12387
  94. M. Huang, A. Dumon, and C. W. Nan, "Effect of Si, In and Ge Doping on High Ionic Conductivity of $Li_7La_3Zr_2O_{12}$," Electrochem. Commun., 21 62-4 (2012). https://doi.org/10.1016/j.elecom.2012.04.032
  95. Y.-T. Chen, A. Jena, W. K. Pang, V. K. Peterson, H.-S. Sheu, H. Chang, and R.-S. Liu, "Voltammetric Enhancement of Li-Ion Conduction in Al-Doped $Li_{7-x}La_3Zr_2O_{12}$ Solid Electrolyte," J. Phys. Chem. C, 121 [29] 15565-73 (2017). https://doi.org/10.1021/acs.jpcc.7b04004
  96. H. Elshinawi, G. W. Paterson, and D. A. Maclaren, "Low-Temperature Densification of Al-Doped $Li_7La_3Zr_2O_{12}$: A Reliable and Controllable Synthesis of Fast-Ion Conducting Garnets," J. Mater. Chem. A, 5 [1] 319-29 (2016). https://doi.org/10.1039/C6TA06961D
  97. E. J. Cheng, A. Sharafi, and J. Sakamoto, "Intergranular Li Metal Propagation through Polycrystalline $Li_{6.25}Al_{0.25}La_3Zr_2O_{12}$ Ceramic Electrolyte," Electrochim. Acta, 223 85-91 (2017). https://doi.org/10.1016/j.electacta.2016.12.018
  98. L. Zhang, X. Zhan, and Y. T. Cheng, "Charge Transport in Electronic-Ionic Composites," J. Phys. Chem. Lett., 8 [21] 5385-89 (2017). https://doi.org/10.1021/acs.jpclett.7b02267
  99. S. Kobi and A. Mukhopadhyay, "Structural (in)Stability and Spontaneous Cracking of Li-La-Zirconate Cubic Garnet upon Exposure to Ambient Atmosphere," J. Eur. Ceram. Soc., 38 [14] 4707-18 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.06.014
  100. R. Kun, F. Langer, and M. D. Piane, "Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic $Li_{7-}La_3Zr_2O_{12}$," ACS Appl. Mater. Interface, 10 [43] 37188-97 (2018). https://doi.org/10.1021/acsami.8b09789
  101. C. Im, D. Park, H. Kim, and J. Lee, "Al-Incorporation into $Li_7La_3Zr_2O_{12}$ Solid Electrolyte Keeping Stabilized Cubic Phase for All-Solid-State Li Batteries," J. Energy Chem., 27 [5] 1501-8 (2018). https://doi.org/10.1016/j.jechem.2017.10.006
  102. X. J. Lu and D. Y. Yang, "Preparation of Garnet-Type $Li_{7-3x}Al_xLa_3Zr_2O_{12}$ at Lower Temperature by Using Powders of Mixed Pre-treatment Conditions," J. Inorg. Organomet. Polym. Mater., 28 [5] 2023-27 (2018). https://doi.org/10.1007/s10904-018-0859-y
  103. J. F. Nonemacher, C. Hüter, and H. Zheng, "Microstructure and Properties Investigation of Garnet Structured $Li_7La_3Zr_2O_{12}$ as Electrolyte for All-Solid-State Batteries," Solid State Ionics, 321 126-34 (2018). https://doi.org/10.1016/j.ssi.2018.04.016
  104. J. K. Padarti, T. T. Jupalli, and C. Hirayama, "Low- Temperature Processing of Garnet-Type Ion Conductive Cubic $Li_7La_3Zr_2O_{12}$, Powders for High Performance All Solid-Type Li-Ion Batteries," J. Taiwan Inst. Chem. Eng., 90 85-91 (2018). https://doi.org/10.1016/j.jtice.2018.02.021
  105. W. J. Xue, Y. P. Yang, and Q. L. Yang, "The Effect of Sintering Process on Lithium Ionic Conductivity of $Li_{6.4}Al_{0.2}La_3Zr_2O_{12}$ Garnet Produced by Solid-State Synthesis," RSC Adv., 8 [24] 13083-88 (2018). https://doi.org/10.1039/C8RA01329B
  106. X. X. Pan, J. X. Wang, X. H. Chang, Y. D. Li, and W. B. Guan, "A Novel Solid-Liquid Route for Synthesizing Cubic Garnet Al-Substituted $Li_7La_3Zr_2O_{12}$," Solid State Ionics, 317 1-6 (2018). https://doi.org/10.1016/j.ssi.2017.12.034
  107. M. Wang and J. Sakamoto, "Correlating the Interface Resistance and Surface Adhesion of the Li Metal-Solid Electrolyte Interface," J. Power Sources, 377 7-11 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.078
  108. P. C. Zhao, G. P. Cao, and Z. Q. Jin, "Self-Consolidation Mechanism and its Application in the Preparation of Al-Doped Cubic $Li_7La_3Zr_2O_{12}$," Mater. Design, 139 65-71 (2018). https://doi.org/10.1016/j.matdes.2017.10.067
  109. L. C. Bernuy, W. J. Manalastas, and L. D. A. J. Miguel, "ChemInform Abstract: Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics," Chem. Mater., 26 [12] 3610-17 (2014). https://doi.org/10.1021/cm5008069
  110. J. Wolfenstine, J. Ratchford, and E. Rangasamy, "Synthesis and High Li-Ion Conductivity of Ga-Stabilized Cubic $Li_7La_3Zr_2O_{12}$," Mater. Chem. Phys., 134 [2-3] 571-75 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.054
  111. R. Wagner and D. Rettenwander, "Crystal Structure of Garnet-Related Li-Ion Conductor $Li_{7−3x}Ga_xLa_3Zr_2O_{12}$: Fast Li-Ion Conduction Caused by a Different Cubic Modification?," Chem. Mater., 28 [6] 1861-71 (2016). https://doi.org/10.1021/acs.chemmater.6b00038
  112. S. H. Yang, M. Y. Kim, and D. H. Kim, "Ionic Conductivity of Ga-Doped LLZO Prepared Using Couette-Taylor Reactor for All-Solid Lithium Batteries," J. Ind. Eng. Chem., 56 422-27 (2017). https://doi.org/10.1016/j.jiec.2017.07.041
  113. C. L. Li, Y. F. Liu, and J. He, "Ga-Substituted $Li_{7-}La_3Zr_2O_{12}$: An Investigation Based on Grain Coarsening in Garnet Type Lithium Ion Conductors," J. Alloys Compd., 695 3744-52 (2017). https://doi.org/10.1016/j.jallcom.2016.11.277
  114. F. Aguesse, W. Manalastas, and L. Buannic, "Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal," ACS Appl. Mater. Interface, 9 [4] 3808-16 (2017). https://doi.org/10.1021/acsami.6b13925
  115. R. H. Brugge, A. K. O. Hekselman, A. Cavallaro, and F. M. Pesci, "Garnet Electrolytes for Solid State Batteries: Visualization of Moisture-Induced Chemical Degradation and Revealing its Impact on the Li-Ion Dynamics," Chem. Mater., 30 [11] 3704-13 (2018). https://doi.org/10.1021/acs.chemmater.8b00486
  116. M. Rawlence, A. N. Filippin, A. Waeckerlin, and T. Y. Lin, "Effect of Gallium Substitution on Lithium Ion Conductivity and Phase Evolution in Sputtered $Li_{7−3x}Ga_xLa_3Zr_2O_{12}$ Thin Films," ACS Appl. Mater. Inter., 10 [16] 13720-28 (2018). https://doi.org/10.1021/acsami.8b03163
  117. S. Qin, X. Zhu, and Y. Jiang, "Extremely Dense Microstructure and Enhanced Ionic Conductivity in Hot-Isostatic Pressing Treated Cubic Garnet-Type Solid Electrolyte of $Ga_2O_3$-doped $Li_7La_3Zr_2O_{12}$," Funct. Mater. Lett., 11 [2] 1850029 (2018). https://doi.org/10.1142/S1793604718500297
  118. S. Qin, X. Zhu, and Y. Jiang, "Growth of Self-Textured $Ga^{3+}$-Substituted $Li_7La_3Zr_2O_{12}$ Ceramics by Solid State Reaction and their Significant Enhancement in Ionic Conductivity," Appl. Phys. Lett., 112 [11] 113901 (2018). https://doi.org/10.1063/1.5019179
  119. D. Rettenwander, "Structural and Electrochemical Consequences of Al and Ga Co substitution in $Li_7La_3Zr_2O_{12}$ Solid Electrolytes," Chem. Mater., 28 [7] 2384-92 (2016). https://doi.org/10.1021/acs.chemmater.6b00579
  120. C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, "Crystal Chemistry and Stability of "$Li_7La_3Zr_2O_{12}$," Garnet: A Fast Lithium-Ion Conductor," Cheminform, 42 [13] 1089-97 (2015).
  121. J. F. Wu, W. K. Pang, V. K. Peterson, L. Wei, and X. Guo, "Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries," ACS Appl. Mater. Interface, 9 [14] 12461-68 (2017). https://doi.org/10.1021/acsami.7b00614
  122. A. Dumon, M. Huang, Y. Shen, and C. W. Nan, "High Li Ion Conductivity in Strontium Doped $Li_7La_3Zr_2O_{12}$ Garnet," Solid State Ionics, 243 [28] 36-41 (2013). https://doi.org/10.1016/j.ssi.2013.04.016
  123. S. Narayanan, F. Ramezanipour, and V. Thangadurai, "Enhancing Li Ion Conductivity of Garnet-Type $Li_{5-}La_3Nb_2O_{12}$ by Y- and Li-Codoping: Synthesis, Structure, Chemical Stability, and Transport Properties," J. Phys. Chem. C, 116 [38] 20154-62 (2012). https://doi.org/10.1021/jp304737x
  124. G. Larraz, A. Orera, J. Sanz, I. Sobrados, V. Diez-Gomez, and M. L. Sanjuan, "NMR Study of Li Distribution in $Li_{7−x}H_xLa_3Zr_2O_{12}$ Garnets," J. Mater. Chem. A, 3 [10] 5683-91 (2015). https://doi.org/10.1039/C4TA04570J
  125. M. Haritha, M. B. Suresh, and R. Johnson, "Synthesis and Evaluation of Thermal, Electrical, and Electrochemical Properties of $Ba_{0.5}Sr_{0.5}Co_{0.04}Zn_{0.16}Fe_{0.8}O_{3-{\delta}}$, as a Novel Cathode Material for IT-SOFC Applications," Ionics, 18 [9] 891-98 (2012). https://doi.org/10.1007/s11581-012-0692-1
  126. X. Chen, T. Wang, W. Lu, T. Cao, M. Xue, B. Li, and C. Zhang, "Synthesis of Ta and Ca Doped $Li_7La_3Zr_2O_{12}$, Solid-State Electrolyte via Simple Solution Method and its Application in Suppressing Shuttle Effect of Li-S Battery," J. Alloys Compd., 744 386-94 (2018). https://doi.org/10.1016/j.jallcom.2018.02.134
  127. X. Chen, T. Cao, M. Xue, H. Lv, B. Li, and C. Zhang, "Improved Room Temperature Ionic Conductivity of Ta and Ca doped $Li_7La_3Zr_2O_{12}$ via a Modified Solution Method," Solid State Ionics, 314 92-7 (2018). https://doi.org/10.1016/j.ssi.2017.11.027
  128. E. Rangasamy, J. Wolfenstine, and J. Allen, "The Effect of 24c-Site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in $Li_{7-x}La_{3-x}A_xZr_2O_{12}$ Garnet-Based Ceramic Electrolyte," J. Power Sources, 230 261-66 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.076
  129. R. A. Jonson and P. J. McGinn, "Tape Casting and Sintering of $Li_7La_3Zr_{1.75}Nb_{0.25}Al_{0.1}O_{12}$ with $Li_3BO_3$ Additions," Solid State Ionics, 323 49-55 (2018). https://doi.org/10.1016/j.ssi.2018.05.015
  130. T. Yang, Y. Li, and W. Wu, "The Synergistic Effect of Dual Substitution of Al and Sb on Structure and Ionic Conductivity of $Li_7La_3Zr_2O_{12}$ Ceramic," Ceram. Int., 44 [2] 1538-44 (2018). https://doi.org/10.1016/j.ceramint.2017.10.072
  131. S. W. Baek, J. M. Lee, and T. Y. Kim, "Garnet Related Lithium Ion Conductor Processed by Spark Plasma Sintering for All Solid State Batteries, " J. Power Sources, 249 197-206(2014)? https://doi.org/10.1016/j.jpowsour.2013.10.089
  132. J. Sun, N. Zhao, and Y. Li, "A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes," Sci. Rep., 7 41217(2017) https://doi.org/10.1038/srep41217
  133. N. Janani, S. Ramakumar, and S. Kannan, "Optimization of Lithium Content and Sintering Aid for Maximized $Li^+$ Conductivity and Density in Ta-Doped $Li_7La_3Zr_2O_{12}$," J. Am. Ceram. Soc., 98 [7] 2039-46 (2015). https://doi.org/10.1111/jace.13578
  134. H. Buschmann, S. Berendts, and B. Mogwitz, "Lithium Metal Electrode Kinetics and Ionic Conductivity of the Solid Lithium Ion Conductors '$Li_7La_3Zr_2O_{12}$' and $Li_{7-x}La_3Zr_{2-x}Ta_xO_{12}$ with Garnet-Type Structure," J. Power Sources, 206 236-44 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.094
  135. K. Hayamizu, Y. Matsuda, and M. Matsui, "Lithium Ion Diffusion Measurements on a Garnet-Type Solid Conductor $Li_{6.6}La_3Zr_{1.6}Ta_{0.4}O_{12}$ by Using a Pulsed-Gradient Spin-Echo NMR Method," Solid State Nucl. Magn. Reson., 70 21-7 (2015). https://doi.org/10.1016/j.ssnmr.2015.05.002
  136. M. Huang, W. Xu, Y. Shen, Y.-H. Lin, and C.-W. Nan, "XRay Absorption Near-Edge Spectroscopy Study on Ge-Doped $Li_7La_3Zr_2O_{12}$: Enhanced Ionic Conductivity and Defect Chemistry," Electrochim. Acta, 115 [3] 581-86 (2014). https://doi.org/10.1016/j.electacta.2013.11.020
  137. X. Liu, Y. Li, T. Yang, et al., "High Lithium Ionic Conductivity in the Garnet-Type Oxide $Li_{7-2x}La_3Zr_{2-x}Mo_xO_{12}$ (x=0?0.3) Ceramics by Sol-Gel Method," J. Am. Ceram. Soc., 100 [4] 1527-33 (2017). https://doi.org/10.1111/jace.14736
  138. Y. Li, Z. Wang, and Y. Cao, "W-Doped $Li_7La_3Zr_2O_{12}$ Ceramic Electrolytes for Solid State Li-ion Batteries," Electrochim. Acta, 180 37-42 (2015). https://doi.org/10.1016/j.electacta.2015.08.046
  139. S. Ramakumar, L. Satyanarayana, and S. V. Manorama, "Structure and Li+ Dynamics of Sb-Doped $Li_7La_3Zr_2O_{12}$ Fast Lithium Ion Conductors," Phys. Chem. Chem. Phys., 15 [27] 11327-38 (2013). https://doi.org/10.1039/c3cp50991e
  140. Z. Cao, W. Ren, and J. Liu, "Microstructure and Ionic Conductivity of Sb-doped $Li_7La_3Zr_2O_{12}$ Ceramics," J. Inorg. Mater., 29 [2] 220-24 (2014). https://doi.org/10.3724/sp.j.1077.2013.13428
  141. S. Ohta, T. Kobayashi, and T. Asaoka, "High Lithium Ionic Conductivity in the Garnet-Type Oxide $Li_{7-X}La_3(Zr_{2-X}$, $Nb_X$)$O_{12}$ (X=0-2)," J. Power Sources, 196 [6] 3342-45 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.089
  142. C. Liu, K. Rui, and C. Shen, "Reversible Ion Exchange and Structural Stability of Garnet-Type Nb-Doped $Li-{7-}La_3Zr_2O_{12}$ in Water for Applications in Lithium Batteries," J. Power Sources, 282 286-93 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.050
  143. R. Murugan, S. Ramakumar, and N. Janani, "High Conductive Yttrium Doped $Li_7La_3Zr_2O_{12}$ Cubic Lithium Garnet," Electrochem. Commun., 13 [12] 1373-75 (2011). https://doi.org/10.1016/j.elecom.2011.08.014
  144. J. Gai, E. Zhao, and F. Ma, "Improving the Li-Ion Conductivity and Air Stability of Cubic $Li_7La_3Zr_2O_{12}$ by the Co-Doping of Nb, Y on the Zr Site," J. Eur. Ceram. Soc., 38 [4] 1673-78 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.002
  145. S. Hu, Y. Li, and R. Yang, "Structure and Ionic Conductivity of $Li_7La_3Zr_{2-x}Ge_xO_{12}$ Garnet-like Solid Electrolyte for All Solid State Lithium Ion Batteries," Ceram. Int., 44 [6] 6614-18 (2018) https://doi.org/10.1016/j.ceramint.2018.01.065
  146. A. Yoon Sang, N. R. Oh, and Y. A. Ri, "Preparation and Characterization of Ta-substituted $Li_7La_3Zr_{2-x}O_{12}$ Garnet Solid Electrolyte by Sol-Gel Processing," J. Korean Ceram. Soc., 54 [4] 278-84 (2017). https://doi.org/10.4191/kcers.2017.54.4.02
  147. S. Song, B. Chen, and Y. Ruan, "Gd-Doped $Li_7La_3Zr_2O_{12}$ Garnet-Type Solid Electrolytes for All-Solid-State Li-Ion Batteries," Electrochim. Acta, 270 501-8 (2018). https://doi.org/10.1016/j.electacta.2018.03.101
  148. X. Chen, T. Cao, and M. Xue, "Improved Room Temperature Ionic Conductivity of Ta and Ca Doped $Li_7La_3Zr_2O_{12}$ via a Modified Solution Method," Solid State Ionics, 314 92-7 (2018). https://doi.org/10.1016/j.ssi.2017.11.027
  149. C. Samson, K. He, and Y. Liu, "Electrochemical Performance of All-Solid-State Lithium Batteries Using Inorganic Lithium Garnets Particulate Reinforced PEO/$LiClO_4$ Electrolyte," Electrochim. Acta, 253 430-38 (2017). https://doi.org/10.1016/j.electacta.2017.08.162
  150. Y. Ren, T. Liu, and Y. Shen, "Garnet-Type Oxide Electrolyte with Novel Porous-Dense Bilayer Configuration for Rechargeable All-Solid-State Lithium Batteries," Ionics, 23 [9] 2521-27 (2017). https://doi.org/10.1007/s11581-017-2224-5
  151. S. Bernhard, R. Daniel, and B. Stefan, "Solid Electrolytes: Extremely Fast Charge Carriers in Garnet-Type $Li_6La_3Zr-TaO_{12}$ Single Crystals," Ann. Phys., 529 [12] 1700140 (2017). https://doi.org/10.1002/andp.201700140
  152. E. Hany, C. Edmund, and A. Corr Serena, "Enhancement of the Lithium Ion Conductivity of Ta-Doped $Li_7La_3Zr_2O_{12}$ by Incorporation of Calcium," Dalton Trans., 46 [29] 9415-19 (2017). https://doi.org/10.1039/c7dt01573a
  153. Y. Tang, Z. Luo, and T. Liu, "Effects of $B_2O_3$ on Microstructure and Ionic Conductivity of $Li_{6.5}La_3Zr_{1.5}Nb_{0.5}O_{12}$ Solid Electrolyte," Ceram. Int., 43 [15] 11879-84 (2017). https://doi.org/10.1016/j.ceramint.2017.06.035
  154. M. He, Z. Cui, and C. Chen, "Formation of Self-Limited, Stable and Conductive Interfaces between Garnet Electrolytes and Lithium Anodes for Reversible Lithium Cycling in Solid-State Batteries," J. Mater. Chem. A, 6 [24] 11463-70 (2018). https://doi.org/10.1039/C8TA02276C
  155. H. Kyle, S. A. Junio, and T. Venkataraman, "Characterization of Lithium-Rich Garnet-Type $Li_{6.5}La_{2.5}Ba_{0.5}ZrTaO_{12}$ for Beyond Intercalation Chemistry-Based Lithium-Ion Batteries," Solid State Ionics, 318 71-81 (2018). https://doi.org/10.1016/j.ssi.2017.09.005
  156. X. Huang, T. Xiu, and E. Badding Michael, "Two-Step Sintering Strategy to Prepare Dense Li-Garnet Electrolyte Ceramics with High $Li^+$ Conductivity," Ceram. Int., 44 [5] 5660-67 (2018). https://doi.org/10.1016/j.ceramint.2017.12.217

Cited by

  1. The Role of Interlayer Chemistry in Li‐Metal Growth through a Garnet‐Type Solid Electrolyte vol.10, pp.12, 2019, https://doi.org/10.1002/aenm.201903993
  2. A Chitosan/Poly(ethylene oxide)‐Based Hybrid Polymer Composite Electrolyte Suitable for Solid‐State Lithium Metal Batteries vol.5, pp.10, 2019, https://doi.org/10.1002/slct.202000260
  3. Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability vol.12, pp.23, 2020, https://doi.org/10.1021/acsami.0c01289
  4. Garnet-Based Solid-State Li Batteries: From Materials Design to Battery Architecture vol.6, 2019, https://doi.org/10.1021/acsenergylett.1c00401
  5. B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods vol.11, pp.2, 2021, https://doi.org/10.3390/nano11020390
  6. Tri-Doping of Sol-Gel Synthesized Garnet-Type Oxide Solid-State Electrolyte vol.12, pp.2, 2019, https://doi.org/10.3390/mi12020134
  7. All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes vol.14, pp.8, 2019, https://doi.org/10.3390/ma14081998
  8. Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview vol.2, pp.3, 2021, https://doi.org/10.3390/electrochem2030026
  9. Energy materials for energy conversion and storage: focus on research conducted in Korea vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00152-2
  10. Freestanding Trilayer Hybrid Solid Electrolyte with Electrospun Interconnected Al-LLZO Nanofibers for Solid-State Lithium-Metal Batteries vol.4, pp.12, 2021, https://doi.org/10.1021/acsaem.1c03202