• Title/Summary/Keyword: liquid measurement

Search Result 1,120, Processing Time 0.034 seconds

A Study on the Small Disturbance Measurement of Liquid Film Thickness by $Moir\acute{e}$ Fringe ($Moir\acute{e}$ Fringe에 의한 액막 두께 미소 변위 측정 연구)

  • Jeon, H.S.;Kim, K.H.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.29-35
    • /
    • 1997
  • Liquid film thickness is measured by $moir\acute{e}$ topography which monitored liquid surface. $Moir\acute{e}$ fringe measurement techniques share the inherent simplicity found in optical interferometric techniques have the advantage of use over a greater range of displacement. $Moir\acute{e}$ fringe are the geometric interference patterns observed when two dense line grating are superposed. Light transmitted through a fixed line grating is deviated by the liquid film surface, producing a distored image of the grating. The $moir\acute{e}$ fringe produced by projection of this optically distored grating onto a second stationary grating permit visualization of the liquid surface and measurement of the liquid film thickness. This study measured the small amplitude of liquid film thickness to the $moir\acute{e}$ fringe pattern produced when spherical metal was dropped glycerin put)1 And the measurement of liquid film thickness flowing down an inclined plate are required to calculate the liquid slope in a position.

  • PDF

A Study of the Characteristics of Thickness Distribution of Liquid Sheet Formed by Two Low Speed Impinging Jets (저속 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • Han, M.J.;Jeon, Y.U.;Seo, T.W.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In this study, the thickness of the liquid sheet formed by two low speed impinging jets was measured by the direct contact method. The effects of jet velocity and liquid viscosity on the thickness were analyzed and the results were compared with theoretical modeling and optical thickness measurement results. The liquid film thickness decreased as the radius and circumferential angle increased. The jet velocity did not affect the liquid film thickness as predicted in theoretical modeling. In the theoretical modeling, there was no influence of the fluid properties on thickness, but in the case of low viscosity liquids, the thickness was predicted high, and it was well matched in high viscosity liquids. The direct measurement results showed no significant difference from the optical measurement results, thus confirming the reliability of the optical measurement method.

Liquid level measurement system using capacitive sensor and optical sensor

  • Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.778-783
    • /
    • 2013
  • Measurement of liquid level in storage and processing vessels, tanks, wells, reservoirs and hoppers is commonly needed. The several different ways to measure the liquid level of oil or water tank have been provided such as an electrostatic capacity, a supersonic waves and an optical science etc. In the study, we have constructed the stable and efficient measurement system to measure the level of liquid at real-time and to get accurate measurement of the maximum and minimum level of the tank. For this purpose, we suggest double sensing methods by adopting both capacitive and optical sensing. The experimental results, presented in this paper, illustrate the effectiveness of the proposed method under different sensing methods.

Experimental Studies on Liquid Film Thickness Measurement and the Formation of Air Core in a Swirl Injector (스월 인젝터에서 액막두께 측정과 Air Core의 구조에 관한 실험적 연구)

  • Kim, Sung-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.147-154
    • /
    • 2006
  • A specially designed injector using electric conductivity was used to measure the liquid film thickness accurately. The measurement conducted through the precise calibration, accuracy is demonstrated in comparison with the previous theory and the results using other measurement method. The tendency of liquid film thickness for geometric parameters was examined by the precise measurement. The variation of air core and stability are examined through the visualization of the formation of air core in swirl chamber and the variation of liquid film thickness by the time.

  • PDF

Liquid film Thickness Measurement for a Swirl Injector (스월 인젝터에서의 액막두께 측정에 관한 연구)

  • Kim Sung-Hyuk;Kim Dong-Jun;Yoon Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.70-77
    • /
    • 2006
  • A specially designed in;ector using electric conductivity was used to measure the liquid film thickness exactly, The measurement conducted through the precise calibration, accuracy is demonstrated in comparison with the previous theory and the results using other measurement method. The variation of internal flow and stability are examined through the variation of liquid film thickness by the time. The tendency of liquid film thickness for geometric parameters was examined by the precise measurement.

A Study on the Measurement of Viscosity by the Small Capacity Torque Transducer (미소용량형 토크변환기에 의한 점도측정에 관한 연구)

  • Kim, Gap-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.16-21
    • /
    • 1999
  • Recently, the rheology on the fluidity of materials has been progressed remarkably. Viscosity measurement for precision-accuracy has needed very important to measure the rheological properties of materials in the field of chemistry-fiber, paint, printing-ink, plastics, rubber, foodstuff-industry, etc. And many methods of measurement have been developed lately. So in this experimental study, small capacity torque transducer with type of strain gage, different method against other existing viscometers, measured viscosity about a liquid that has flowing characteristics of newtonian liquid. Using the assumed computational equation of viscosity, it has same value of viscosity in each different radius of rotating cylinder. In the result, this equipment will be used in the viscosity measurement of a liquid taking flowing characteristics of newtonian liquid.

  • PDF

A Study on the Evaluation of Measurement Uncertainty for the National Calibration and Test Organizations (Liquid Flow) (국가교정검사기관(액체유량)의 측정불확도 평가 및 비교연구)

  • 임기원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1012-1019
    • /
    • 2000
  • A proficiency test is one of programs which Korea Research Institute of Standards and Science(KRISS), as national metrology institute, is putting in operation for the mutual recognition arrangement. The Fluid Flow Group of KRISS evaluated the measurement capability for liquid flowmeter calibrator of the national calibration and test organizations. The uncertainty of national standard system was estimated in accordance with Guide to The Expression of Uncertainty in Measurement (ISO), and the turbine flowmeter, which was used for the round-robin test as a reference flowmeter, was characterized. The round-robin tests with the turbine flowmeter package were carried out in 1995 and 1999. The test results of the organizations and those of KRISS agreed within $\pm0.2$%. It is found thus that the organizations have the traceability of the national standard for liquid flow measurement.

  • PDF

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

Liquid Atomization and Spray Characteristics in Electrostatic Spray of Twin Fluids (2유체 정전분무의 액체 미립화 및 분무 특성)

  • Kim, Jeong-Heon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1552-1560
    • /
    • 2001
  • This paper presents the experimental results of a study undertaken to develop an electrostatic spray system for a combustion application. The characteristics of the liquid atomization and the droplet dispersion in the electrostatic spray of twin fluids were investigated by the optical measurement techniques. The processes associated with the break-up of charged jets were also observed using the laser sheet visualization. The diameter and velocity of droplets were simultaneously measured using the phase Doppler measurement technique. The electrostatic atomization of the liquid fuel depended primarily on the charging voltage and the flow rate, but the dispersion of droplets depended significantly on the aerodynamic flow. Aerodynamic influences on the liquid atomization decreased with an increase of the charging voltage. Consequently, the liquid atomization and the droplet dispersion could be independently controlled using the electrostatic and aerodynamic mechanisms.

A Study on the Measurement and Comparison(IEC 60079-32-2) of Flammable Liquid Conductivity (인화성 액체 도전율에 관한 측정 및 비교(IEC 60079-32-2) 연구)

  • Lee, Dong Hoon;Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.22-31
    • /
    • 2019
  • The flammable liquid conductivity is an important factor in determining the generation of electrostatic in fire and explosion hazardous areas, so it is necessary to study the physical properties of flammable liquids. In particular, the relevant liquid conductivity in the process of handling flammable liquids in relation to the risk assessment and risk control in fire and explosion hazard areas, such as chemical plants, is classified as a main evaluation item according to the IEC standard, and it is necessary to have flammable liquid conductivity measuring devices and related data are required depending on the handling conditions of the material, such as temperature and mixing ratio for preventing the fire and explosion related to electrostatic. In addition, IEC 60079-32-2 [Explosive Atmospheres-Part 32-2 (Electrostatic hazards-Tests)] refers to the measuring device standard and the conductivity of a single substance. It was concluded that there is no measurement data according to the handling conditions such as mixing ratio of flammable liquid and temperature together with the use and measurement examples. We have developed the measurement reliability by improving the structure, material and measurement method of measuring device by referring to the IEC standard. We have developed a measurement device that is developed and manufactured by itself. The test results of flammable liquid conductivity measurement and the data of the NFPA 77 (Recommended Practice on Static Electricity) Annex B Table B.2 Static Electric Characteristic of Liquids were compared and verified by conducting the conductivity measurement of the flammable liquid handled in the fire and explosion hazardous place by using Measuring / Data Acquisition / Processing / PC Communication. It will contribute to the prevention of static electricity related disaster by taking preliminary measures for fire and explosion prevention by providing technical guidance for static electricity risk assessment and risk control through flammable liquid conductivity measurement experiment. In addition, based on the experimental results, it is possible to create a big data base by constructing electrostatic physical characteristic data of flammable liquids by process and material. Also, it is analyzed that it will contribute to the foundation composition for adding the specific information of conductivity of flammable liquid to the physical and chemical characteristics of MSDS.