• Title/Summary/Keyword: liquid level system

Search Result 315, Processing Time 0.045 seconds

A Simple Method to Make the Quadruple Tank System Near Linear

  • Lee, Jietae;Kyoung, Inhyun;Heo, Jea Pil;Park, YoungSu;Lim, Yugyeong;Kim, Dong Hyun;Lee, Yongjeh;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.767-770
    • /
    • 2017
  • Quadruple tank liquid level systems are popular in testing multivariable control systems for multivariable processes with positive or negative zeros. The liquid level system is nonlinear and it will help to illustrate the robustness of control systems. However, due to nonlinearity, it can be cumbersome to obtain process parameters for testing linear control systems. Perturbation sizes are limited for valid linearized process models, requiring level sensors with high precision. A simple method where the outlet orifice is replaced to a long tube is proposed here. The effluent flow rate becomes proportional to the liquid level due to the friction loss of long tube and the liquid level system shows near linear dynamics. It is applied to the quadruple tank system for easier experiments.

Liquid level measurement system using capacitive sensor and optical sensor

  • Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.778-783
    • /
    • 2013
  • Measurement of liquid level in storage and processing vessels, tanks, wells, reservoirs and hoppers is commonly needed. The several different ways to measure the liquid level of oil or water tank have been provided such as an electrostatic capacity, a supersonic waves and an optical science etc. In the study, we have constructed the stable and efficient measurement system to measure the level of liquid at real-time and to get accurate measurement of the maximum and minimum level of the tank. For this purpose, we suggest double sensing methods by adopting both capacitive and optical sensing. The experimental results, presented in this paper, illustrate the effectiveness of the proposed method under different sensing methods.

Simultaneous Measurement of Liquid-level, Concentration and Temperature of a Urea Tank using Ultrasonic and Electrical Conductivity Sensors (초음파와 전기전도 센서를 이용한 우레아 탱크 수위, 농도 및 온도의 동시 측정 방안)

  • Choi, Byungchul;Kim, Taewook
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.71-78
    • /
    • 2017
  • The purpose of this study is to propose the basic data for the development of a sensor capable of simultaneously measuring the liquid-level, concentration and temperature of a urea tank using ultrasonic and electrical conductivity sensors for diesel vehicles with a urea-SCR system. It was found that the liquid-level of the urea tank using the ultrasonic sensor showed a good linearity with the actual liquid-level, and the urea concentration maintained good linearity in the range of 32.5 wt% to 10 wt%. It was an effective measurement of urea concentration to use the electrical conductivity sensor in the temperature range of $-10{\sim}22^{\circ}C$ and to use the ultrasonic sensor at $22^{\circ}C$ or more. Simultaneous measurement of concentration, liquid-level and temperature of the urea tank will be possible by attaching the electrical conductivity sensor and the ultrasonic sensor (split-type) to one sensor together.

The Design of Filter for Hearth Liquid Level Estimation in Blast Furnace (고로 용융물 레벨 변화 추정을 위한 디지털 필터 설계)

  • Cho, Nae-Soo;Han, Mu-Ho;Kwon, Woo-Hyen;Choi, Youn-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Optimizing the tapping time of a blast furnace is important to a stable operation and life extension. To optimize the tapping time of the blast furnace, the location of Hearth Liquid Level should be recognized. There are several ways to measure the hearth liquid level in the blast furnace, such as Electromotive Force(EMF) measurement, pressure measurement by putting in nitrogen probe and manometry with strain gauge. In this paper, it will be discussed using strain gauge among the three methods. Conventional strain gauge must be revised periodically. Since, internal pressure, temperature of internal refractory material and wind pressure have effect on the strain gauge. However, static pressure value is required to compensate. To solve these problems, this paper suggests finding relationship between Hearth Liquid Level and strain gauge output, adding digital filter in strain gauge. Using the proposed method, it was possible to estimate the hearth liquid level and determine the appropriate tapping time. Usefulness of the proposed method through simulations and experimental results are confirmed.

Development of cryogenic liquid-vapor separator and liquid-level meter operating under high pressure condition (고압 상황에서 작동되는 극저온 기액 분리기와 액체 계면 측정기의 개발)

  • Lee, Cheon-Kyu;Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.51-55
    • /
    • 2011
  • In this study, the liquid-vapor (L-V) separator equipped with liquid-level meter is developed. In the developed L-V separator, the flange is designed to be attachable so that the separator can be flexibly applied under any cases where the volumetric of L-V separator is varied by the system requirement. The leak-tightness between the attachable flange and the chamber is experimentally confirmed with the use of double groove indium wire sealing even under the high pressure up to 20 bar. In addition, the liquid-level meter is designed and fabricated to figure out the inner state of L-V separator. It consists with 19 carbon composition resistors in series. All resistors are separately calibrated in the temperature range from 77 K to 200 K. The performance of the L-V separator and the liquid-level meter is investigated with experimental tests, and the result is presented in this paper.

Microcontroller-Based Liquid Level Control Modeling

  • Dumawipata, Teerasilapa;Unhavanich, Sumalee;Tangsrirat, Worapong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.82.3-82
    • /
    • 2001
  • This work presents a design technique for the implementation of the liquid level control system by based on the use of a single-chip microcontroller. The proposed model system offers the following attractive features : (1) application of the pressure transducer for sensing the height of liquid in tank (2) using the obtained liquid level for defining on-off condition of the water pump (3) the liquid values were controlled by using stepping motors for controlling of 57 points (4) can set up by using manual control or automatic control (5) can monitor and display the process status either on microcontroller-based control board or on the computer via RS232 serial-port. Experimental results have been employed to show the effectiveness ...

  • PDF

Process -dynamic Model for Stock-fluid in a Pressurized Paper Machine Headbox (초지기 가압-헤드박스 내 지료유체의 공정-동특성모델)

  • 윤성훈
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.35-46
    • /
    • 1999
  • Mathematical modeling provided a systematic analysis for the dynamic behavior of stock fluid in a paper machine pressurized headbox. Dynamic responses of liquid level, sheet basis weight and hydraulic pressure were predicted from the simulation model which represents the system. A unit step and asinusoidal wave load were considered as the input forcing functions in the headbox. Results are summarized as follows : 1. The dependence of sheet basis weight on liquid level in the pressurized-headbox was non -linear. 2. Liquid level in the head-box showed first-order lag with a unit step forcing to fluid input rate ; 3 . The amplitude of wave response of liquid level was inversely proportional to the time content for the sinusoidal input changes ; 4.Sheet basis weight showed second-order oscillating underamped responses for the step input load of flow rate ; 5. The damping factor in the second-order system was a function of air-pressure in the headbox ; and, 6. Dead-time existed in the measuring process for the headbox slice pressure.

  • PDF

Development of RFID Management System for Packaged Liquid Food Logistics (I) - Analysis of RFID Recognition Performance by Level of Water - (용기포장 액상 식품의 물류관리를 위한 RFID 시스템 개발(I) - 물의 높이에 따른 RFID 인식성능 분석 -)

  • Kim, Yong-Joo;Kim, Tae-Hyeong
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.454-461
    • /
    • 2009
  • The purpose of this study is to analyze the RFID recognition performance by level of water. A 13.56 MHz RFID management system for packaged liquid food logistics is consisted of antenna, reader, passive type tags, and embedded controller. The tests were conducted at different level of water, distances between tag and antenna, and position of attached tags. To analyze the RFID recognition performance, maximum recognition distances for a container and recognition rates for a logistics made of 27 containers were measured and analyzed. The maximum recognition distance for a container was different depending on position of attached tags, and attached tag at upside position showed a good performance. But, the recognition rate of 27 containers showed a good ability for attached tags at front side position, 30~35 cm distance to antenna, and water level 1. Therefore, to manage packaged liquid food logistics using RFID system, position of attached tag, distances between tag and antenna, and level of water should be considered.

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

Decoupling Control of Three-tank Liquid Level Systems Based on Feedforward Compensation (Feedforward 보상에 근거한 3개의 탱크 액체 레벨 시스템의 통제 분리)

  • Shi, Xue-Wen
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.36-41
    • /
    • 2008
  • By considering decoupling between loops as a kind of measurable disturbance, a steady-state decoupling method based on feedforward compensation is proposed for a three-tank liquid level system often encountered in practical process control. In addition, the three-tank liquid level system's dynamic model with structure of two-input and two-output is presented according to its working principle. Finally simulation experiments given in C++Builder language demonstrate the effectiveness of the proposed method.