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Abstract − Quadruple tank liquid level systems are popular in testing multivariable control systems for multivariable

processes with positive or negative zeros. The liquid level system is nonlinear and it will help to illustrate the robustness

of control systems. However, due to nonlinearity, it can be cumbersome to obtain process parameters for testing linear

control systems. Perturbation sizes are limited for valid linearized process models, requiring level sensors with high pre-

cision. A simple method where the outlet orifice is replaced to a long tube is proposed here. The effluent flow rate

becomes proportional to the liquid level due to the friction loss of long tube and the liquid level system shows near lin-

ear dynamics. It is applied to the quadruple tank system for easier experiments.
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1. Introduction

Laboratory experiments are important for engineering courses,

especially, for process control courses [1]. Understanding dynamics

(non-steady state responses) is required for process control and, for

this, laboratory experiments are very useful [2]. Liquid level sys-

tems are one of the units widely used for process control experi-

ments. They are simple, cheap and safe and no wastes are produced. 

Liquid level systems are often too simple to illustrate various pro-

cess dynamics. On the other hand, the quadruple tank system sug-

gested by Johansson [3] breaks such negative views of liquid level

systems without adding additional complicate apparatus. The qua-

druple tank system is a nonlinear multi-input and multi-output pro-

cess that can be made to show non-minimum phase behavior, a non-

trivial control problem to be resolved. Many research papers have

been reported [4-12]. Several modifications have also been made

[13-15]. Gatzke et al. [16] showed that the quadruple tank system is

better than other experimental systems such as the inverted pendu-

lum in the student reputations.

The liquid level system with an orifice outlet is nonlinear because

the effluent flow rate is proportional to the square root of liquid level.

This nonlinearity is useful to illustrate robustness of linear control

systems. However, nonlinearity can limit sizes of the set point change

and perturbation. Level sensors with high precision may be needed.

To relieve these disadvantages, a simple method where the outlet ori-

fice is replaced by a long tube is proposed. The liquid level system

with a long tube outlet can be made to be near linear. Results are veri-

fied experimentally. It can be applied to the quadruple tank system

for easier experiments. Linear experimental systems will reduce time

in steps required to apply control researches such as the model iden-

tification step. Although the proposed system is near linear, robust-

ness issues also exist because liquid flow rates can change as

experimental environments such as ambient temperature and tube

condition change. 

2. Liquid Level System with Near Linear Dynamics

Consider a single tank system as shown in Fig. 1. For an orifice

outlet (Fig. 1b), the dynamic model for liquid level is

(1)

where A is the cross-sectional area of the tank, h is the tank level,

q
in

 and q
out

 are input and output flow rates, g is the gravitational

acceleration constant (980 cm/s2), a is the cross-sectional area of

the orifice and η is a correction factor. For q
out

 in Eq. (1), we

use the relationship derived from the Bernoulli equation (or Tor-

ricelli’s law) [17],

(2)

In almost all process control examples since Johansson [3], η is

omitted (η = 1). However, without η, q
out

 can have errors not

negligible for some orifice shapes. For example, for sharp edge

orifices such as the drilled holes and tube fittings, η = 0.62 should

be used [17] and, in this case, q
out

 with η = 1 has 61% error. 

The linearized model is

(3)

A
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Here the subscript ss denotes the steady state value. The process

gain k and time constant τ in the linearized first order model of

Eq. (3) are

(4)

The process gain and time constant vary much as the operating

point of h
ss

 varies.

For a near linear dynamics, a long tube as in Fig. 1c is considered.

A laminar flow [17] is assumed such that

(5)

where N
Re

 is the Reynold number (dimensionless), ρ is the liquid

density (1.0 g/cm3 for water at 20 oC), D is the inner diameter

(ID) of tube, V is the mean velocity of liquid and µ is the viscosity

of liquid (0.01 g/(cm.s) for water at 20 oC). For a horizontal straight

tube with the length L, the Bernoulli equation becomes

(6)

The friction loss in the last term of Eq. (6) is due to the Hagen-

Poiseuille equation [17]. For a low liquid velocity of V, ignoring the

quadratic term in Eq. (6), we have

(7)

and 

(8)

The dynamic model for the tank level becomes, with introducing

a correction factor ξ,

(9)

This model is linear and its process gain k and time constant τ are

(10)

They are independent of the operating point of h
ss

. Experiments

can be carried out without worrying that the time constant and

process gain become too small or large.

Figure 2 shows experimental results to illustrate the Bernoulli

equation (2) and the Hagen-Poiseuille equation (8). Water with

ρ = 1 g/cm3 and μ = 1.1 cP = 0.011 g/(cm·s) is used for the working

liquid. The Bernoulli equation (2) describes the effluent flow rate well

when η = 0.62 is used. For long tubes, that relationships between the

tank level and effluent flow rate are near linear. However, the Hagen-

Poiseuille equation (8) has some errors and their causes are beyond

our considerations here. As in the Bernoulli equation (2), the correc-

tion factor ξ should be used and ξ (or ξa) should be identified experi-

mentally.

Figure 3 shows step responses for various steady state levels whose

perturbation sizes are all the same. The tank ID is 7.5 cm. The orifice

ID is 0.2 cm and the long tube is 2 m long with ID of 0.4 cm. For the
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Fig. 1. A liquid level system ((a) schematic diagram, (b) horizontal

orifice, and (c) tube coiled two times).

Fig. 2. Liquid levels versus effluent flow rates for various outlet

tubes (experimental results).

Fig. 3. Experimental step responses for various steady state levels

where perturbation sizes of the input flow are all the same

(For the long tube, step responses from three different steady

state levels are overlapped).
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orifice outlet, the sizes and speeds of level changes are varying

according to the initial steady state level. On the other hand, they are

not varying for the long tube outlet (Step responses from three differ-

ent steady state levels are nearly overlapped in Fig. 3). 

Figure 4 shows time constants for tanks with the orifice outlet and

long tube. The time constant is obtained by finding the time for the

liquid level to reach 63.2% of the new steady state value graphically

for a step change of influent flow rate. For the orifice outlet, the time

constant is growing by the rate of  as the operating point h
ss

grows. On the other hand, for the long tube outlet, the time constant

is not varying and is independent of the operating point h
ss

.

3. Quadruple Tank Systems

3-1. Quadruple Tank System in the Non-interacting Connection

Consider a quadruple tank system in Fig. 5a suggested by Johans-

son [3]. Four tanks have the same cross-sectional area A with the

same long tube outlet with the inner diameter D and length L. Then

the dynamic model becomes 

,  

(11)

Here b
1
 and b

2
 are valve coefficients for the input flow control

signals of u
1
 and u

2
. Process parameters to be identified experi-

mentally are few and, in addition, they are independent of four

liquid levels. 

Dynamic model of Eq. (11) is linear and its transfer function

between the input variables u=(u
1
, u

2
)T and the output variables y=

(y
1
, y

2
)T is

(12)

The zeros of the transfer function matrix G
a
(s) are the zeros of the

numerator polynomial of

(13)

Hence, when b
1
>b

2
>0, the numerator polynomial of Eq. (13) has

a positive real root and the liquid level system of Eq. (11) will show

the non-minimum phase behavior [3].

The process gain matrix K is

(14)

The relative gain array becomes

(15)

Considering the transfer function of Eq. (12), y
1
 is dynamically

preferred to be controlled by u
1
 and, similarly, y

2
 by u

2
. However,

when b
1
>b

2
>0, the pairing of (u

1
−y

1
) and (u

2
−y

2
) for the multi-

loop control cannot be used due to the negative relative gain [18].

The relative gain array of Eq. (15) is dependent only on b
i
’s. Hence

a given relative gain array is realized easily. However, when the

usual orifices are used instead of the long tubes, it is dependent on

the steady state liquid levels in addition to b
i
’s. So it will be very dif-

ficult to obtain the operating conditions where the four tank system

hss

A
dh

1

dt
-------- b

1
u
2

γh
1

–=

A
dh

2

dt
-------- b

2
u
1

γh
1

γh
2

–+=

A
dh

3

dt
-------- b

2
u
1

γh
3

–=

A
dh

4

dt
-------- b

2
u
2

γh
3

γh
4

–+= γ ξ
πρgD4

128μL
----------------=

y
1

h
2

=

y
2

h
4

=

Y s( ) Ga s( )U s( )=

Ga s( )

b
2

As γ+
--------------

b
1
γ

As γ+( )2
---------------------

b
1
γ

As γ+( )2
---------------------

b
2

As γ+
--------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

det Ga s( )( )
b
2

2

As γ+( )2
---------------------

b
1

2γ2

As γ+( )4
---------------------–

b
2

2
As γ+( )2 b

1

2γ2–

As γ+( )4
-----------------------------------------= =

K Ga 0( )
1

γ
---

b
2
b
1

b
1
b
2⎝ ⎠

⎜ ⎟
⎛ ⎞

= =

Λ
1

b
2

2
b
1

2
–

---------------
b
2

2
b–
1

2

b–
1

2
b
2

2

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Fig. 4. Time constants (Tank ID=7.5 cm, experimental results).

Fig. 5. Quadruple tank systems with long tube outlets.
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has a given relative gain array.

3-2. Quadruple Tank System in the Interacting Connection

Consider the quadruple tank system in Fig. 5b used in [15]. This

four tank system is somewhat easier to construct than the original

one of Fig. 5a because all tanks are located at the same elevation. For

the same tanks and outlet tubes as above, the dynamic model

becomes 

,  

(16)

The dynamic model of Eq. (16) is linear and its transfer function

between the input variables u=(u
1
, u

2
)T and the output variables

y=(y
1
, y

2
)T is

(17)

The zeros of the transfer function matrix G
b
(s) are the zeros of

the numerator polynomial of

(18)

Hence, when b
1
>b

2
>0, the numerator polynomial of Eq. (18) has

a positive real root and the liquid level system of Eq. (16) will show

the non-minimum phase behavior. The process gain matrix K=G
b
(0)

of the system (17) is the same as Eq. (14). When b
1
>b

2
>0, the pair-

ing of (u
1
−y

1
) and (u

2
−y

2
) for the multiloop control cannot be used. 

4. Conclusions

Liquid level systems are widely used in testing process control

researches and teaching in the process control laboratory. The liquid

level system where the outlet orifice is replaced to a long tube is

shown to have near linear dynamics. When the effluent flow is lami-

nar, a long tube produces friction and its flow rate is proportional to

the liquid level (Hagen-Poiseuille equation [17]). Applying this tech-

nique, the quadruple tank system can be made to be near linear with

keeping properties about zero locations and relative gain arrays. The

proposed modification can help the liquid level system be used in the

process control laboratories with ease and more confidence.
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