• Title/Summary/Keyword: liquid flow

Search Result 2,924, Processing Time 0.024 seconds

A Study on the Performance Characteristics of the Large Liquid Ejector (대형 액체 이젝터의 성능특성에 관한 연구)

  • 김경석;이종수;김경근;김원녕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.90-98
    • /
    • 1990
  • The liquid ejector, having no moving, lubricating and leaking parts, is widely used as the various pumps because of its high working confidence and simplicity. Previously, computer aided design program for the small-sized liquid ejector was developed based on the one-dimensional flow analysis and the systematical laboratory level experiments. Through the present research, it is confirmed that the previously developed computer program to getermine the main design dimensions and to calculate the expected performance curve is satisfactorily applied to design the large liquid ejectors.

  • PDF

Pressure Loss and Heat Transfer Characteristics of the Glass Beads-Water Flow in a Vertical Tube (수직관내 유리알-물 유동의 압력손실 및 열전달 성능)

  • Kim, N.H.;Kim, J.S.;Lee, Y.P.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.550-560
    • /
    • 1996
  • Recently, fluidized bed heat exchangers with circulating liquid are widely used in a number of places-chemical, process, food concentration, waste water treatment facilities, etc. In a circulating heat exchanger, solid particles circulate with the liquid, thereby increase the heat transfer and reduce the fouling potential of the heat exchanger. In this study, glass beads were circulated through a vertical tube. The pressure loss and the heat transfer coefficient were measured. At low flow velocities, glass beads enhanced the heat transfer considerably. The enhancement increased as the volume fraction of the glass beads increased. The pressure loss showed a similar trend. From the observed particle behavior near tube wall, a possible explanation of the trend is provided.

  • PDF

Temperature Distribution of an Air-Cooled PCB Mounted with Finned and Finnless Modules (휜이 부착된 강제 공랭 모듈을 실장한 기판의 온도분포에 관한 연구)

  • Shin, D.J.;Park, S.H.;Lee, I.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.624-629
    • /
    • 2001
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around on a module with longitudinal fin heat sink cooled by forced air flow. In the first method, inlet air flow(1-7m/s) and input power(3-5W) was varied after a heated module were placed on an adiabatic floor($320{\times}550{\times}1mm^{3}$). An adiabatic wall temperature was determinated to use liquid crystal film(LCF). In the second method to determinate heat transfer coefficient, inlet air flow(1-7m/s) and the heat flux of rubber heater($0.031-0.062\;W/cm^{2}$) was varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. In addition, surface oil-film visualization were performed to characterize the macroscopic flow-field around a module.

  • PDF

Real-time measurement of void fraction and its propagation speed of slug flow with two Conductance meters (두 개의 컨덕턴스미터를 이용한 슬러그류의 기공률 및 기공률 전달속력 실시간 측정)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kang, Deok-Hong;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1569-1573
    • /
    • 2004
  • Two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with separated probe designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From time lag between two conductance meter, we could calculate the propagation speed of void fraction.

  • PDF

Numerical Analysis of the Flow Characteristics in the Nano Fountain-Pen Using Membrane Pumping (박막펌핑을 이용한 Nano Fountain-Pen의 유동 특성에 관한 수치적 연구)

  • Lee, J.H.;Lee, Y.K.;Lee, S.H.;Kim, Hun-Mo;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.19-24
    • /
    • 2006
  • Nano fountain-pen is a novel device to make the constant patterning in micro process using new designed probe. Fountain-pen nanolithography (FPN) is applied for constant supply of liquid in conjunction of patterns and surface variation in the micro process. In this study, nuo fountain-pen is composed with reservoir, micro channels, tip and scondary chamber. Instead of traditional method only using capillary force, liquid can be definitely and exactly injected with membrane pumping by the repulse force of tip. It is dfficult to perform experiments in the micro range so that we carried out a numerical analysis for internal flow, using a commercial code, FlUENT, The velocity, pressure and flow rate are obtained under laminar, unsteady, three-dimensional incompressible flow with no-slip condition, and results are graphically described.

Analysis of Duct Flow Characteristics under an Electromagnetic Force (전자기력에 의한 덕트 내부의 유동특성)

  • Kim, Min-Seok;Kim, Jung-Hyun;Jeon, Mun-Ho;Kim, Chang-Eob;Kim, Seo-Hyun;Kwon, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.141-143
    • /
    • 2007
  • This paper presents the MHD characteristics of the liquid metal flow. The electromagnetic force was calculated by the equivalent circuit method. This Lorentz force was used as a source term for the fluid flow equations. The modified Navier-Stokes equation was solved to give the velocity distributions of the liquid metal flow.

  • PDF

Flow Coefficient Experiments of a Hypergolic Igniter with Rupture Disc Ends (파열판 방식 연소기 점화기의 유량계수 시험)

  • Yoo, Jaehan;Lee, Joongyoup;Lee, Soo Yong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Many of the liquid rocket engines use a hypergolic igniter with rupture disc ends located in the combustion chamber ignition line. In this study, the flow coefficient tests of the igniter, which have a solenoid valve upstream, were performed. The tension-type rupture discs for radial and circumferential scores and the igniter with them were tested using water at room temperature. The effects of the score, flow rate, the disc thickness, gas pocket and the solenoid valve on the coefficient were analyzed.

A STUDY ON CHARACTERISTICS OF Ac ELECTRO-OSMOTIC FLOWS IN THE MICROCHANNEL WITH COPLANAR ELECTRODES (마이크로 채널 내 동일 평면 전극에 교류인가로 인한 유동특성 연구)

  • Heo, H.S.;Kang, S.M.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.163-166
    • /
    • 2006
  • This paper presents numerical results of fluid flows and mixing in a microfluidic device for AC electroosmotic flow (AC-EOF) with coplanar electrodes on top and bottom walls. Differently from previous EOF a channel which attached a couple of coplanar electrodes can be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flows and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX10. It was found that the flow near the coplanar electrodes is of 3-D complex flows and vortices between the other electrodes, and as a consequence the AC-electroosmotic flow on the electrodes plays an important role in mixing the liquid.

  • PDF

Flow Visualization and Measurement of Velocity and Temperature in Parallel Plates

  • Piao, R.-L;Bae, D.-S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.277-284
    • /
    • 2004
  • This paper describes the influence of through-flow on the mixed convection in a parallel plates with the upper part is cooled and the lower part heated. When forced convection is imposed on natural convection, it is found that the flow pattern of mixed convection in the parallel plates can be classified into three patterns which were affected by Reynolds number. In such a mixed convection, the flow pattern plays an important role in the heat transfer process. In this study, thermo-sensitive liquid crystal suspension method is employed, then the visualization image acquired through the above method is processed by the color image processing technique and the two-dimensional velocity vector and temperature configuration are measured simultaneously.

The Cooling Performance of Thrust Chamber with Film Cooling (막냉각에 따른 추력실의 냉각 성능)

  • Kim, Sun-Jin;Jeong, Hae-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.117-124
    • /
    • 2006
  • Experiments on film cooling were performed with a small scale rocket engine homing liquid oxygen (LOx) and Jet A-1(jet engine fuel). Film coolants(Jet A-1 and water) were injected through the film cooling injector. Film cooled length and the outside wall temperature of the combustor were determined for chamber pressure, and the different geometries(injection angle) with the flow rates of film coolant. The loss of characteristic velocity due to film cooling was determined for the case of film cooling with water and Jet A-1. As the coolant flow increases, the outside wall temperatures decrease but the decrease in the outside wall temperatures reduced over the 8 percent film coolant flow rate. The efficiency of characteristic velocity was decreased with the Increase of the film coolant flow rate.