• Title/Summary/Keyword: liquid flow

Search Result 2,932, Processing Time 0.034 seconds

Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies (첨가제의 조성이 폐유리-점토 타일의 곡강도에 미치는 영향)

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.416-422
    • /
    • 2013
  • Cullet-loess tile bodies are successfully fabricated using cullet, loess, hollow microspheres, and sintering additives (borosilicate glass frit, boric acid, or fumed silica) as starting materials. The effects of the additive composition and sintering temperature on the sintered density and flexural strength of the cullet-loess tile bodies are investigated. The sintered density of the cullet-loess tile bodies increases with an increase in the sintering temperature as a result of the enhanced densification of pore walls through the viscous flow of a liquid phase formed from the glass frit and sintering additives. The flexural strength of the cullet-loess tile bodies increases with increases in the sintering temperature and the cullet content in the starting composition. A maximal flexural strength of 40 MPa is obtained in cullet-loess tile bodies sintered with glass frit at $800^{\circ}C$ in air.

Electrochemical properties of $LiMnO_2$ cathode materials by quenching method (Quenching 법을 이용한 리튬폴리머 전지용 $LiMnO_2$ 정극활물질의 전기화학적 특성)

  • Jeon, Yeon-Su;Jin, En-Mei;Jin, Bo;Park, Kyung-Hee;Park, Bok-Kee;SaGong, Geon;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.362-363
    • /
    • 2008
  • Well-defined o-$LiMnO_2$ cathode materials were synthesized using LiOH and $Mn_3O_4$ starting materials at $1050^{\circ}C$ in an argon flow by quenching method. The synthesized $LiMnO_2$ particles with crystalline phases were identified with X-ray diffraction (XRD, Dmax/1200, Rigaku). XRD results, demonstrated that the compound $LiMnO_2$ can be indexed to a single-phase material having the orthorhombic structure. In this paper, we analyzed the electrochemical performance of $LiMnO_2$/Li using solid polymer electrolyte and liquid electrolyte.

  • PDF

Application of SWMM for Management of the Non-point Source in Urban Area -Case Study on the Pohang City- (도시지역 비점오염원 관리를 위한 SWMM의 적용 -포항시를 대상으로-)

  • Lee, Jae-Yong;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.247-254
    • /
    • 2008
  • Non-point source pollution that originates from surface applied chemicals in either liquid or solid form is a part of urban activities and it appears in the surface runoff caused by rainfall. This study investigates the characteristics of non point source pollution in relation to storm events and the first washing effect in the Study area, which is comprised of different land use types. Then, a Best Management Practices (BMP) model, for urban areas, is applied with the Storm water Management Model (SWMM) Windows Interface which was developed by the EPA in the USA. During the storm event analysis of the hydrographic and pollutographic data showed that the peak of pollutants concentration was within the peak flow, 30 to 60 minute into the storm event in the Study area. The results of simulation using SWMM Windows Interface, Structure Techniques as applied in the study were highly efficient for removal of pollutants. Predicted removal efficiency was 26.0% for SS, 22.1 for BOD, 24.1% for COD, 20.6% for T-N, and 21.6% for T-P, respectively.

Simultaneous Determination of Tin, Nickel, Lead, Cadmium and Mercury in Cigarette Material by Solid Phase Extraction and HPLC

  • Hu, Qun;Yang, Guangyu;Ma, Jing;Liu, Jikai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1433-1436
    • /
    • 2003
  • A new method for the simultaneous determination of heavy metal ions in cigarette material by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The cigarette material was digested by microwave digestion. Lead, cadmium, mercury, nickel and tin ions in the digested samples were pre-column derivatized with tetra-(2-chlorophenyl)-porphyrin ($T_2$-CPP) to form color chelates, which were then enriched by solid phase extraction with a $C_{18}$ cartridge. The chelates were separated on a Waters Xterra$^{TM}RP_{18}$ column by gradient elution with methanol (containing 0.05 mol/L pyrrolidine-aceticacid buffer salt, pH = 10.0) and acetone (containin0.05 mol/L pyrrolidine-acetic acid buffer salt, pH = 10.0)as mobile phase at a flow rate of 0.5mL/min and analyzed with a photodiode array detector from 350-600 nm. The detection limits of lead, cadmium, mercury, nickel and tin were 4,3,3,8 and 5 ng/L, respectively, in the original samples. This method was afforded good results.

Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer

  • Jin, Yinzhe;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.276-280
    • /
    • 2007
  • In this work, caffeine and some catechin compounds + C, EC, EGC, and EGCG were extracted from green tea by using molecular imprinted polymers (MIP) as sorbent materials in a solid-phase extraction (SPE) process known as MISPE (molecular imprinted solid-phase extraction). For synthesis of MIP, caffeine was employed as the template, MAA as the monomer, EGDMA as the crosslinker, and AIBN as the initiator. A solution of caffeine (0.2 mg/mL in methanol) was utilized in the solid extraction cartridges following loading, washing, and elution procedures with acetonitrile, methanol, and methanol-acetic acid (90/10, %v/v) as the solvents, respectively. This solid-phase extraction protocol was applied for the extraction of caffeine and some catechin compounds from green tea. A comparison was made between the results obtained with the MIP cartridges and a traditional C18 reversed-phase cartridge. It was thereupon found that the recovery of caffeine by the MIPbased sorbent used in this work was almost two and four times greater than that by a commercially available C18 material. A quantitative analysis was conducted by high performance liquid chromatography (HPLC) using a C18 column (5 μm, 250 × 4.6 mm) with methanol/water (40/60, %v/v) as the mobile phase at a flow rate of 0.5 mL/min.

Analysis of Dynamic Characteristics and Performances of Vent-Relief Valve (산화제 벤트/릴리프밸브의 동특성 해석 및 작동성능분석)

  • Jang, Je-Sun;Koh, Hyeon-Seok;Han, Sang-Yeop;Lee, Kyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.741-747
    • /
    • 2010
  • Vent-relief valve performed as a safety-valve combination for liquid propellant feeding system of space launch vehicle, which can vent the vaporized oxygen vapor during both filling cryogenic oxidizer into tank and flight. We have designed vent-relief model by using the AMESim code to predict dynamic characteristics and simulate pneumatic behavior of valve. To validate valve model we have compared by opening time in vent model, and opening/closing pressure by mathematical methods and improved the accuracy through numerical flow analysis by using FLUENT code. In this study, we had verified design parameters and analyzed operating performances. We can use these analysis results to precedent development study on propellant feeding system of Korea Space Launch Vehicle.

  • PDF

Valve actuation effects on discrete monopropellant slug delivery in a micro-scale fuel injection system

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.409-425
    • /
    • 2014
  • Converging flows of a gas and a liquid at a microchannel cross junction, under proper conditions, can result in the formation of periodic, dispersed microslugs. This microslug formation phenomenon has been proposed as the basis for a fuel injection system in a novel, 'discrete' monopropellant microthruster designed for use in next-generation miniaturized satellites. Previous experimental studies demonstrated the ability to generate fuel slugs with characteristics commensurate with the intended application during steady-state operation. In this work, numerical and experimental techniques are used to study the effect of valve actuation on slug characteristics, and the results are used to compare with equivalent steady-state slugs. Computational simulations of a valve with a 1 ms valve-actuation cycle show that as the ratio of the response time of the valve to the fully open time is increased, transient effects can increase slug length by up to 17%. The simulations also demonstrate that the effect of the valve is largely independent of surface tension coefficient, which is the thermophysical parameter most responsible for slug formation characteristics. Flow visualization experiments performed using a miniature valve with a 20 ms response time showed less than a 1% change in the length of slugs formed during the actuation cycle. The results of this study indicate that impulse bit and thrust calculations can discount transient effects for slower valves, but as valve technology improves transient effects may become more significant.

Friction Characteristics for Construction thermal insulation manufacturing system Breaker (건축단열재 생산시스템 브레이커 마찰특성)

  • Son, Jae-Hwan;Kang, Hae-Dong;Noh, Kyoo-Ik;Suk, Jang-Geun;Choi, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.61-65
    • /
    • 2014
  • Construction heat insulating material for construction is used in large amounts in industry. In the manufacturing process of this insulation material, a thermal insulation material is completed while a polymer in a liquid state passes through Hall breaker. At this time, the quality and form of a product are determined by a hole in the breaker according to the oil pressure of the fluid and the change of the flow velocity. The friction wear action with regard to partner movement between the two levels of quality of materials affects the performance and the lifetimes of machine parts. In this study of a friction test, SM45C, which is a material used to create brake holes, was used. PVC was used to create the specimen. Moreover, an experiment divided a lubricous state and an unlubricated condition. The resulting value over the load of a pin, the revolving speed of a disk, and the standby state of an experimental result disk could be acquired.

A Study on the Moulding Analysis of Automobile Valve Body Mid-plate (자동차 밸브바디 중간플레이트 성형해석에 관한 연구)

  • Jang Hun;Sung Back-Sub;Cha Yong-Hoon;Kim Duck-joong;Lee Youn-sin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.174-179
    • /
    • 2005
  • In the super slow speed die casting process, the casting defects due to melt flow should be controlled in order to obtain sound casting products. The casting defects that are caused by molten metal were cold shut formation, entrapment of air, gas, and inclusion. But the control of casting defects has been based on the experience of the foundry engineers. The calculation of simulation can produce very useful and important results. The calculation data of die casting process condition from the computer simulation by the Z-CAST is made to insure that the liquid metal is injected at the right velocity range and that the filling time is small enough to prevent premature solidification. The parameters of runner shape that affected on the optimized conditions that was calculated with simple equation were investigated. These die casting process control techniques of automobile valve body mid-plate have achieved good agreement with the experimental data of tensile strength, hardness test, and material structure photographies satisfactory results.

  • PDF

Impact of Multi-dimensional Core Thermal-hydraulics on Inherent Safety of Sodium-Cooled Fast Reactor (다차원 노심열수력 현상이 소듐고속로 고유안전성에 미치는 영향)

  • Kwon, Young-Min;Jeong, Hae-Yong;Ha, Kwi-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3175-3180
    • /
    • 2008
  • A metal-fueled pool-type liquid metal fast reactor (LMFR) provides large margins to sodium boiling and fuel damage under accident conditions. The favorable passive safety results are obtained by both a reactivity feedback mechanism in the core and a passive decay heat removal system. Among the various reactivity feedbacks, the ones by a thermal expansion of a radial dimension of the core and by the control rod drivelines are strongly dependent on the flow conditions in the core and the hot pool, respectively. The effects of multidimensional thermal hydraulic characteristics on these reactivity feedbacks are investigated by the system-wide safety analysis code SSC-K with advanced thermal hydraulics models. Particularly a detailed three dimensional thermal hydraulics reactor core model is integrated into SSC-K for use in a whole system analysis of the passive safety aspects of LMR designs. The model provides fuel and cladding temperatures for every fuel pin in a reactor and coolant temperatures for every coolant sub-channel in the reactor.

  • PDF