DOI QR코드

DOI QR Code

Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer

  • Jin, Yinzhe (Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University)
  • Published : 2007.02.20

Abstract

In this work, caffeine and some catechin compounds + C, EC, EGC, and EGCG were extracted from green tea by using molecular imprinted polymers (MIP) as sorbent materials in a solid-phase extraction (SPE) process known as MISPE (molecular imprinted solid-phase extraction). For synthesis of MIP, caffeine was employed as the template, MAA as the monomer, EGDMA as the crosslinker, and AIBN as the initiator. A solution of caffeine (0.2 mg/mL in methanol) was utilized in the solid extraction cartridges following loading, washing, and elution procedures with acetonitrile, methanol, and methanol-acetic acid (90/10, %v/v) as the solvents, respectively. This solid-phase extraction protocol was applied for the extraction of caffeine and some catechin compounds from green tea. A comparison was made between the results obtained with the MIP cartridges and a traditional C18 reversed-phase cartridge. It was thereupon found that the recovery of caffeine by the MIPbased sorbent used in this work was almost two and four times greater than that by a commercially available C18 material. A quantitative analysis was conducted by high performance liquid chromatography (HPLC) using a C18 column (5 μm, 250 × 4.6 mm) with methanol/water (40/60, %v/v) as the mobile phase at a flow rate of 0.5 mL/min.

Keywords

References

  1. Chen, W.; Liu, F.; Zhang, X.; Li, K. A.; Tong, S. Talanta 2001, 55, 29 https://doi.org/10.1016/S0039-9140(01)00328-9
  2. Zhang, T.; Liu, F.; Chen, W.; Wang, J.; Li, K. Analytica Chinica Acta 2001, 450, 53 https://doi.org/10.1016/S0003-2670(01)01390-3
  3. Zheng, N.; Li, Y. Z.; Chang, W. B.; Wang, Z. M.; Li, T. J. Analytica Chimica Acta 2002, 452, 277 https://doi.org/10.1016/S0003-2670(01)01465-9
  4. Ramstrom, O.; Yu, C.; Mosbach, K. J. Mol. Recogniti. 1996, 9(5/6), 691 https://doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<691::AID-JMR322>3.0.CO;2-G
  5. Schweitz, L.; Andersson, L. I.; Niilsson, S. Anal. Chem. Acta 1997, 69(6), 1179 https://doi.org/10.1021/ac9607929
  6. Blomgre, A.; Berggren, C.; Holmberg, A.; Larsson, F.; Sellergre, B.; Ensing, K. J. Chromatogr. A 2002, 975, 157 https://doi.org/10.1016/S0021-9673(02)01359-6
  7. Wang, D. X.; Hong, S. P.; Row, K. H. Korean J. Chem. Eng. 2004, 21(4), 853 https://doi.org/10.1007/BF02705530
  8. Yano, K.; Karube, I. Trends in Anal. Chem. 1999, 18(3), 199 https://doi.org/10.1016/S0165-9936(98)00119-8
  9. Snowden, T. S.; Anslyn, E. V. Current Opinion in Chem. Bio. 1999, 3(6), 740 https://doi.org/10.1016/S1367-5931(99)00034-4
  10. Ulbricht, M. J. Chromatogr. B 2004, 804, 113 https://doi.org/10.1016/j.jchromb.2004.02.007
  11. Park, J. K.; Kim, S. J. Korean J. Chem. Eng. 2004, 21(5), 994 https://doi.org/10.1007/BF02705583
  12. Wang, D. X.; Hong, S. P.; Row, K. H. Bull. Korean Chem. Soc. 2004, 25(3), 357 https://doi.org/10.5012/bkcs.2004.25.3.357
  13. Jin, Y.; Row, K. H. Korean J. Chem. Eng. 2005, 22(2), 264 https://doi.org/10.1007/BF02701495
  14. Caro, E.; Marce, R. M.; Cormack, P. A. G.; Sherrington, D. C.; Borrull, F. J. Chromatogr. A 2003, 995, 233 https://doi.org/10.1016/S0021-9673(03)00543-0
  15. Stanley, G. W.; Edward, P. C. L.; Paul, M. M. J. Pharmaceutical and Biomedical Analysis 2004, 36, 483 https://doi.org/10.1016/j.jpba.2003.05.001
  16. Sherry, Y. F.; Edward, P. C. L.; Ewa, D. Z.; Susan, S. J. Chromatogr. A 2004, 1027, 155 https://doi.org/10.1016/j.chroma.2003.11.042
  17. Zhu, X.; Yang, J.; Su, Q.; Cai, J.; Gao, Y. J. Chromatogr. A 2005, 1092, 161 https://doi.org/10.1016/j.chroma.2005.07.037
  18. Jung, M. W.; Kim, K. P.; Cho, B. Y.; Paeng, I. R.; Lee, D. W.; Park, Y. H.; Paeng, K. J. Bull. Korean Chem. Soc. 2006, 27(1), 77 https://doi.org/10.5012/bkcs.2006.27.1.077
  19. Caro, E.; Marce, R. M.; Borrull, F.; Cormack, P. A. G.; Sherrington, D. C. Trends in Analytical Chemistry 2006, 25(2), 143 https://doi.org/10.1016/j.trac.2005.05.008
  20. Zuo, Y.; Chen, H.; Deng, Y. Talanta 2002, 57, 307 https://doi.org/10.1016/S0039-9140(02)00030-9
  21. Melissa, K.; George, L. Mutation Research 2000, 459, 211 https://doi.org/10.1016/S0921-8777(99)00074-9
  22. Kang, J. H.; Chung, S. T.; Row, K. H. J. Ind. Eng. Chem. 2002, 8(4), 354
  23. Cheong, W. J.; Park, M. H.; Kang, G. W.; Ko, J. H.; Seo, Y. J. Bull. Korean Chem. Soc. 2005, 26(5), 747 https://doi.org/10.5012/bkcs.2005.26.5.747
  24. Mullett, W. M.; Lai, E. P. C. J. Pharm. Biomed. Anal. 1999, 21, 835 https://doi.org/10.1016/S0731-7085(99)00220-4
  25. Kobayashi, T.; Murawaki, Y.; Reddy, P. S.; Abe, M.; Fujii, N. Analytica Chimica Acta 2001, 435, 141 https://doi.org/10.1016/S0003-2670(00)01281-2
  26. Xie, J.; Zhu, L.; Luo, H.; Zhou, L.; Li, C.; Xu, X. J. Chromatogr. A 2001, 934, 1 https://doi.org/10.1016/S0021-9673(01)01294-8
  27. Hassan, S.; Roger, J.; Bernard, R. J. Chromatogr. A 2000, 885, 217 https://doi.org/10.1016/S0021-9673(99)01084-5
  28. Zurutuza, A.; Bayoudh, S.; Cormack, P. A. G.; Dambies, L.; Deere, J.; Bischoff, R.; Sherrington, D. C. Analytica Chimica Acta 2005, 542, 14 https://doi.org/10.1016/j.aca.2004.12.019
  29. Olsen, J.; Martin, P.; Wilson, I. D.; Jones, G. R. Analyst 1999, 124(4), 467 https://doi.org/10.1039/a900040b
  30. Baggiani, C.; Trotta, F.; Giraudi, G.; Giovannoli, C.; Vanni, A. Anal. Comm. 1999, 36(7), 263 https://doi.org/10.1039/a902968k

Cited by

  1. Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a noncovalent approach vol.401, pp.7, 2011, https://doi.org/10.1007/s00216-011-5280-0
  2. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011 vol.27, pp.6, 2014, https://doi.org/10.1002/jmr.2347
  3. An alternative clean-up column for the determination of polychlorinated biphenyls in solid matrices vol.17, pp.12, 2015, https://doi.org/10.1039/C5EM00409H
  4. Polyphenols from fresh frozen tea leaves (Camellia assamica L.,) by supercritical carbon dioxide extraction with ethanol entrainer - application of response surface methodology vol.52, pp.2, 2015, https://doi.org/10.1007/s13197-013-1085-9
  5. Assay Results for Assessment of Free Radical Scavenging Activity of Green Tea Nutraceuticals vol.81, pp.7, 2016, https://doi.org/10.1111/1750-3841.13362
  6. A new synthetic route to molecularly imprinted ORMOSIL: Characterization and evaluation pp.1520-5754, 2017, https://doi.org/10.1080/01496395.2017.1407341
  7. Eco-friendly separation of catechins using cyclodextrins as mobile phase additives in RP-HPLC vol.23, pp.4, 2011, https://doi.org/10.1002/pca.1359
  8. Influence of Polymer Morphology on the Capacity of Molecularly Imprinted Resins to Release or to Retain their Template vol.41, pp.12, 2009, https://doi.org/10.1295/polymj.PJ2009098
  9. Caffeine in Green Tea: Its Removal and Isolation vol.43, pp.2, 2007, https://doi.org/10.1080/15422119.2013.771127
  10. On-column decaffeination and HPLC analysis of epigallocatechin gallate in green tea nutraceuticals vol.51, pp.4, 2016, https://doi.org/10.1080/01496395.2015.1116571
  11. Comparison of Salt Cations in the Design of Nonionic Surfactant Based Aqueous Biphasic Systems: Application in Polyphenol Separations vol.61, pp.11, 2007, https://doi.org/10.1021/acs.jced.5b01008