• Title/Summary/Keyword: liquid expansion

Search Result 255, Processing Time 0.084 seconds

A Study on Expansion Possibility of Treatment Capacity in Public Livestock Manure Treatment Plant Integrated Individual Farmhouses (개별농가와 연계한 가축분뇨 공공처리시설의 처리용량 확대 가능성에 관한 연구)

  • Kim, J.H.;Kim, J.H.;Park, C.H.;Kwag, J.H.;Choi, D.Y.;Jeong, K.H.;Chung, U.S.;Yoo, Y.H.;Chung, M.S.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.281-288
    • /
    • 2009
  • The objective of this study is to predict the expansion possibility of treatment capacity in public livestock manure treatment plant (PLMTP) integrated individual farmhouses. According to the treatment efficiency and cost reducing effect, expansion possibility was examined using three cases; (i) decrease of influent concentration from 20,000 mg/L BOD to 1,000 mg/L BOD, (ii) maintenance of low concentration influent with minimum revising existing facilities (BIOSUF) and (iii) maintenance of low concentration influent without revising existing facilities (liquid corrosion method, LCM). In BIOSUF, the treatment capacity increased from 130 ton/day to 300 ton/day. Also, LCM resulted in expansion of treatment capacity from 210 ton/day to 250 ton/day while that of designed concentration influent decreased from 210 ton/day to 190 ton/day. The treatment costs were 14,674 won/ton and 9,929 won/ton for BIOSUF and LCM, respectively. After some revisions, it will be changed to 7,221 won/ton and 8,277 won/ton. Therefore, it must be considered that the livestock manure treats to low concentration and flows into PLMTP for the efficient operation and reducing treatment cost.

  • PDF

Characteristic of Sintering of Mullite-Cordierite Composite by a Solution-Polymerization Route Employing PVA (PVA를 이용한 Solution-Polymerization 합성법에 의하여 제조된 Mullite-Cordierite 복합체의 소결특성)

  • Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.155-164
    • /
    • 2005
  • The characteristics of sintering for Mullite-Cordierite (MC) composites and the effect of $TiO_2$ addition were studied. The MC composites were manufactured by a solution-polymerization method using PVA as a polymer carrier, and $TiO_2$ was used as a sintering agent. They were calcined at $1300^{\circ}C$, planetary milled for 4 h and sintered at $1450^{\circ}C$. As cordierite content increased, relative density of materials was increased up to $98\%$ and sinterability was improved. In case of $50\;wt\%$ mullite/$5\;wt\%$ cordierite composition sintered for 16 h, the flexural strength and thermal expansion coefficient were 190 MPa and $3.07{\times}0^{-6}/^{\circ}C$, respectively. However, mechanical properties were decreased with the cordierite contents higher than $50\;wt\%$ because of the excess liquid-phase amount. As the addition of $TiO_2$ is increased, columnar crystal of mullite and liquid-phase contents were increased. In particular, the flexural strength and thermal expansion coefficient decreased in case of $5\;wt\%\;TiO_2$ addition.

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Micropatterning of Polyimide and Liquid Crystal Elastomer Bilayer for Smart Actuator (스마트 액추에이터를 위한 폴리이미드 및 액정 엘라스토머 이중층의 미세패터닝)

  • Yerin Sung;Hyun Seung Choi;Wonseong Song;Vanessa;Yuri Kim;Yeonhae Ryu;Youngjin Kim;Jaemin Im;Dae Seok Kim;Hyun Ho Choi
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.169-274
    • /
    • 2024
  • Recent attention has been drawn to materials that undergo reversible expansion and contraction in response to external stimuli, leading to morphological changes. These materials hold potential applications in various fields including soft robotics, sensors, and artificial muscles. In this study, a novel material capable of responding to high temperatures for protection or encapsulation is proposed. To achieve this, liquid crystal elastomer (LCE) with nematic-isotropic transition properties and polyimide (PI) with high mechanical strength and thermal stability were utilized. To utilize a solution process, a dope solution was synthesized and introduced into micro-printing techniques to develop a two-dimensional pattern of LCE/PI bilayer structures with sub-millimeter widths. The honeycomb-patterned LCE/PI bilayer mesh combined the mechanical strength of PI with the high-temperature contraction behavior of LCE, and selective printing of LCE facilitated deformation in desired directions at high temperatures. Consequently, the functionality of selectively and reversibly encapsulating specific high-temperature materials was achieved. This study suggests potential applications in various actuator fields where functionalities can be implemented across different temperature ranges without the need for electrical energy input, contingent upon molecular changes in LCE.

A Study of Ice-Formation Phenomena on Freezing of Flowing Water in a Stenotic Tube

  • Suh, Jeong-Se;Kim, Moo-Geun;Ro, Sung-Tack;Yim, Chang-Soon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.1-10
    • /
    • 1999
  • In this study, a numerical analysis is made on the ice-formation for laminar water flow inside a stenotic tube. The study takes into account the interaction between the laminar flow and the stenotic port in the circular tube. The purpose of the present numerical investigation is to assess the effect of a stenotic shape on the instantaneous shape of the flow passage during freezing upstream/downstream of the stenotic channel. In the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the solid and liquid regions are resolved. In a channel flow between parallel plates, the agreement between the of predictions and the available experimental data is very good. Numerical analyses are performed for parametric variations of the position and heights of stenotic shape and flow rate. The results show that the stenotic shape has the great effect on the thickness of the solidification layer inside the tube. As the height of a stenosis grows and the length of a stenosis decreases, the ice layer thickness near the stenotic port is thinner, due to backward flow caused by the sudden expansion of a water tunnel. It is found that the flow passage has a slight uniform taper up to the stenotic channel, at which a sudden expansion is observed. It is also shown that the ice layer becomes more fat in accordance with its Reynolds number.

  • PDF

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Natural Frequency Characteristics of a Cylindrical Tank Filled with Bounded Compressible Fluid (압축성 유체로 충진된 원통형 탱크의 고유진동수의 특성)

  • 정경훈;김강수;박근배
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.291-302
    • /
    • 1997
  • This paper presents an analytical method for evaluating the free vibration of a circular cylindrical tank filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical tank with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a comercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the liquid-filled tank structure was found. The compressiblity and the fluid density effects on the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the tank, whereas the compressibility of fluid affects mainly on the natural frequencies of lower circumferential modes.

  • PDF

Improvement of Degradation Characteristics in a Large, Racetrack-shaped 2G HTS Coil for MW-class Rotating Machines

  • Park, Heui Joo;Kim, Yeong-chun;Moon, Heejong;Park, Minwon;Yu, Inkeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1166-1172
    • /
    • 2018
  • Degradation due to delamination occurs frequently in the high temperature superconductors (HTS) coil of rotating machines made with 2nd generation (2G) HTS wire, and the authors have observed other similar cases. Since an HTS field coil for a rotating machine is required to have stable current control and maintain a steady state, co-winding techniques for insulation material and epoxy resin for shape retention and heat transfer improvement are applied during coil fabrication. However, the most important limiting factor of this technique is delamination, which is known to be caused by the difference in thermal expansion between the epoxy resin and 2G HTS wire. Therefore, in this study, the experimental results of mixing the ratio of epoxy resin and alumina ($Al_2O3$) filler were applied to the fabrication of small and large test coils to solve the problem of degradation. For the verification of this scheme, eight prototypes of single pancake coils with different shapes were fabricated. They showed good results. The energization and operation maintenance tests of the stacked coils were carried out under liquid neon conditions similar to the operation temperature of an MW-class rotating machine. In conclusion, it was confirmed that the alumina powder mixed with epoxy resin in an appropriate ratio is an effective solution of de-lamination problem of 2G HTS coil.

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline (고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구)

  • Huh, Cheol;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.

Combustion Test Results of Regenerative Cooling Combustor for 30 tonf-class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 재생냉각 연소시험 결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.133-137
    • /
    • 2008
  • Results of combustion tests performed for a regenerative cooling combustor of a 30 tonf-class liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. The combustion chamber is composed of mixing head, baffle injector, and regenerative cooling chamber. The hot firing tests were performed at design and off-design points. The test results show that the combustion characteristic velocity is in the range of 1738${\sim}$1751 m/sec and the specific impulse of the combustion chamber is in the range of 253${\sim}$270 sec. The peak of combustion characteristic velocity and specific impulse for this combustor is shown at mixture ratio of 2.35 and 2.5, respectively.

  • PDF