30톤급 액체로켓엔진 연소기 재생냉각 연소시험 결과

한영민* · 김종규* · 이광진* · 임병직* · 안규복* · 김문기* · 서성현* · 최환석*

Combustion Test Results of Regenerative Cooling Combustor for 30 tonf-class Liquid Rocket Engine

Yeoung-Min Han* · Jonggyu Kim* · Kwang-Jin Lee* · Byoungjik Lim* · Kyubok Ahn* · Munki Kim* · Seonghyeon Seo* · Hwan-Seok Choi*

ABSTRACT

Results of combustion tests performed for a regenerative cooling combustor of a 30 tonf-class liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. The combustion chamber is composed of mixing head, baffle injector, and regenerative cooling chamber. The hot firing tests were performed at design and off-design points. The test results show that the combustion characteristic velocity is in the range of $1738 \sim 1751$ m/sec and the specific impulse of the combustion chamber is in the range of $253 \sim 270$ sec. The peak of combustion characteristic velocity and specific impulse for this combustor is shown at mixture ratio of 2.35 and 2.5, respectively.

초 록

추력 30톤급 액체로켓엔진 재생냉각 연소기에서 수행했던 연소시혐의 결과에 대해 기술하였다. 연소 기의 연소압력은 60 bar, 추진제 유량은 약 89 kg/s 그리고 노즐 팽창비는 12이다. 연소기는 분사기 헤드, 배플분사기 그리고 재생냉각 연소실 등으로 구성하였다. 연소시험은 설계점뿐만 아니라 탈설계 점 등 다양한 조건에서 이루어졌다. 연소특성속도는 약 1738부터 1751 m/sec이며, 비추력은 약 253 에서 270 sec 정도의 값을 얻었다. 재생냉각 연소기의 최대 연소특성속도는 혼합비 2.35에서 나타났 으며 최대 비추력은 혼합비 2.5에서 나타났다.

Key Words: Combustion Chamber(연소기), Regenerative Cooling(재생냉각), Combustion Characteristic Velocity(연소특성속도), Specific Impulse(비추력)

1. 서 론

우주발사체용 액체로켓엔진은 발사체의 신뢰 성에 매우 큰 영향을 미치는 부품으로 엔진의 연소기는 엔진의 비추력 및 성능에 직접적인 영 향을 미친다. 액체로켓엔진의 연소기는 추진제를

^{*} 한국항공우주연구원 연소기팀

연락저자, E-mail: ymhan@kari.re.kr

균일하게 분포시켜 분사하는 연소기 헤드, 추진 제를 혼합한 후 연소시켜 고온 고압의 가스를 생성하는 연소실, 연소가스를 높은 속도로 방출 시켜 추력을 얻는 노즐 그리고 점화시스템 및 추력전달 구조물 등으로 구성되어 있다[1]. 연소 기의 연소실에서는 연소현상에 의해 매우 강한 열 방출이 발생하는데, 이러한 열악한 열환경에 견디기 위해서, 연소실 내피는 대부분 열전도가 높은 구리합금 채널을 사용한 재생냉각, 연료를 이용한 막냉각 그리고 내벽으로 열을 차단하는 열차폐코팅(TBC) 등을 사용한다. 그 외 연소실 벽면 보호를 위해 여러 가지 냉각 방식을 사용 하고 있으며, 연소기 열유속의 정도 및 연소기 내피의 재료 등에 따라 위의 냉각 방식을 조합 해서 사용한다[1].

본 논문에서는 우주발사체용 액체로켓엔진 연 소기 개발을 위해 30톤급 액체로켓엔진 실물형 연소기를 설계[2] 제작하여 작동성 검증 및 연소 안정성 확인[3,4], 연소성능 검증 및 채널 물 및 케로신 냉각 성능 확인[5,6], 재생냉각 연소기 (팽창비 3.5) 연소시험[7] 등을 마치고 full-scale (팽창비 12) 연소기의 재생냉각 설계점 및 탈설 계점 성능 확인 연소시험을 수행한 결과에 대해 기술하고자 한다. 연소시험결과 연소성능, 재생 냉각 성능, TBC의 내구성 등은 만족할만한 결과 를 보여 주었고 분사기, 재생냉각 연소실, TBC 코팅 등 연소기의 손상은 없었다. 이는 30톤급 케로신 재생냉각 액체로켓엔진 연소기의 전체적 인 기술 검증 완료를 의미하는 것으로 향후 대 형 액체로켓엔진 연소기 개발에 활용될 수 있을 것이다.

2. 재생냉각 연소기 및 연소 시험

2.1 Full-scale 재생냉각 연소기

본 논문에서 언급한 노즐 팽창비 12인 full-scale 액체로켓엔진 연소기는 액체산소와 케 로신을 추진제로 사용하고 가스발생기 사이클 30톤급 엔진에 적용되는 것이다. 연소압력은 60 bar, 혼합비는 2.44, 전체 추진제 유량은 88.8 kg/s, 연소실 직경은 380 mm, 노즐목 직경은 180.5 mm, 노즐출구직경은 625 mm(노즐 팽창비 12)로 연소특성속도는 약 1710 m/sec을 목표로 설계되었고 상세한 것은 참고문헌[8]에 제시하였 다.

Fig. 1 Photo of Full-scale Combustion Chamber

2.2 연소시험

본 액체로켓엔진 재생냉각 연소기는 설계점 및 탈설계점을 포함하여 총 8회, 117초 연소시험 을 수행하였다. 점화 및 작동성 확인을 위한 3 초, 연소성능 및 재생냉각 성능 확인을 위한 설 계점 20초, full-scale 재생냉각 연소실 및 TBC 내구성 확인을 위한 설계점 60초 연소시험을 수 행한 후 연소안정성이 취약한 저압/저혼합비인 OD1에 대한 SRT 포함 연소시험을 수행하였고, 연소압력이 60 bar에서 혼합비에 따른 연소특성 속도 및 비추력을 파악하기 위한 60 bar/저혼합 비인 OD8 및 60 bar/고혼합비인 OD6에 대한 SRT 포함 각각 6초 연소시험을 수행하였다. 마 지막으로 탈설계점 시험을 마친 후 저압(LP, 30bar)에서의 연소특성 및 설계점에서의 연소성 능을 확인하기 위한 시험을 수행하였다. Figure 2는 설계점 연소시험시의 화염사진을 보여주고 있으며 Fig. 3은 8회 연소시험이 끝난 후의 연소 기 사진을 보여주고 있다. Full-scale 재생냉각 연소기의 케로신 재생냉각 연소시험은 모두 성 공적으로 이루어졌으며 8회 연소시험 동안 연소 기 헤드의 분사기 및 연소실에 손상은 발생하지

않았다. 8회의 연소시험 중 설계점 60초 연소시 험에서 얻은 연소기 manifold 및 연소실의 압력 을 Fig. 4에 나타내었다. 케로신(Jet-A1)을 이용한 재생냉각 경우 냉각성능 및 냉각 채널 벽면에서 의 coking 등이 문제가 될 수 있는데[9], 이러한 문제들을 실제 연소환경에서 여러 작동 조건 및 60초 연소시험 등을 수행한 본 선행연구개발에 서 해결 및 검증하였다고 볼 수 있다.

Fig. 2 Flame of Full-scale Combustion Chamber at Hot Firing Test

(a) Combustion Chamber (b) Mixing Head

Fig. 3 Photo of Full-scale Combustion Chamber after Hot Firing Test

Fig. 4 Manifold/Chamber Pressure of Full-scale Combustion Chamber (60sec)

연소시험 8회에 대한 연소압력과 혼합비에 따 른 예측값과 시험결과 값을 Fig. 5에 나타내었 다. 연소압력이 높은 탈설계점에 대한 시험은 기 존의 연소기에서 많이 수행한 관계로 연소압력 이 60bar인 조건에서 혼합비가 변경되는 연소시 험을 수행하였다.

Fig. 5 Chamber Pressure and Mixture Ratio of Combustion Chamber

3. 연소시험 결과

3.1 재생냉각 연소기의 연소특성속도

본 재생냉각 연소기에 대한 설계점 및 탈설계 점 연소시험에서 얻은 연소특성속도(C*)를 정리 하면 Table 1과 같다.

Table	1	Combustion	Characteristic	Velocity(C*)	of
		Combustion	Chamber		

	Pressure	O/F	C*
DP(3sec)	59.2	2.4	1722
DP(20sec)	59.2	2.3	1750
DP(60sec)	59.7	2.4	1751
OD1	50.6	2.0	1739
OD6	59.4	2.0	1751
OD8	60.3	2.7	1747
DP(10sec)	59.5	2.4	1755
LP	29.8	2.3	1717

설계점에서의 연소특성속도는 약 1750 m/sec (CEA equilibrium 계산에 의한 이론 C* 대비 약

97%)로 예상치인 1710 m/sec보다 약 2.3%증가 하였고 노즐 팽창비 3.5인 연소기의 1727 m/sec 보다 약 1% 증가한 값을 보여주었다. 이는 노즐 팽창부의 재생냉각에 따른 케로신 온도상승에 따른 추진제의 엔탈피 증가와 밀도감소에 따른 분사기 차압의 증가에 의한 혼합효율 증가에 의 한 것으로 사료된다.

재생냉각 full-scale 연소기에서 혼합비에 따른 연소특성속도를 Fig.6에 제시하였다. 연소압력 60 bar에서의 혼합비 2.0에서 2.7까지의 data에서 보면 혼합비 약 2.3~2.4근처에서 최대 연소특성 속도 값을 보여주고 있다.

Fig. 6 Combustion Characteristic Velocity(C*) and Mixture Ratio of Combustion Chamber

탈설계점 연소시험 후 진행한 산화제 선행 점 화(LOx lead) 연소시험의 경우에 초기 연소실에 약간의 섭동이 발생하였지만 연소기 손상 없이 점화가 이루어졌다. 본 산화제 선행 점화 시험결 과는 향후 점화 시퀸스 설정에 활용될 것이다. 또한 설계압력의 50% 수준인 저압조건에서 시험 을 수행하였는데 분사기 차압이 설계차압 12 bar의 25%인 약 3 bar에서도 연소안정성에 문제 가 없었다. 저압에서의 연소특성속도는 약 1717 m/sec로 향후 대형 연소기의 저압시험 결과로부 터 설계압력의 성능 예측 시 활용될 수 있다.

3.2 재생냉각 연소기의 비추력

Full-scale 재생냉각 연소기에 대한 설계점 및 탈설계점 연소시험에서 얻은 지상 비추력(Isp)을 정리하면 Table 2와 같다. 설계점에서 연소기의 지상 비추력은 약 269 sec(진공 비추력 약 306 sec, 비추력 효율 약 93%)로 팽창비 11인 내열재 연소실의 254 sec 보다 약 6% 증가한 값을 보여 주었다. 이러한 증가는 노즐 팽창비, 연소압력, 연소특성속도 증가에 의한 것이다.

Table 2 Specific Impulse(Isp) of Combustion Chamber

	Pressure	O/F	Isp
DP(3sec)	59.2	2.4	264
DP(20sec)	59.2	2.3	269
DP(60sec)	59.7	2.4	270
OD1	50.6	2.0	254
OD6	59.4	2.0	265
OD8	60.3	2.7	270
DP(10sec)	59.5	2.4	269
LP	29.8	2.3	230

연소특성속도에 따른 비추력곡선을 Fig. 7에 나타내었다. 비추력은 연소특성속도가 증가함에 따라 증가하는 일반적인 경향을 보여주었다.

Fig. 7 Specific Impulse(Isp) and Combustion Characteristic Velocity(C*) of Combustion Chamber

Full scale 재생냉각 연소기에서 혼합비 변화에 따른 비추력곡선을 Fig. 8에 제시하였다. 연소기 의 전체 혼합비를 기준으로 할 때 혼합비가 약 2.5근처에서 최대 지상 비추력 값을 보이고 있 다. 하지만 연소시험 data의 부족으로 향후 더 많은 시험이 진행된 후 이에 대한 분석이 이루 어져야 한다.

Fig. 8 Specific Impulse(Isp) and Mixture Ratio of Combustion Chamber

4. 결 론

30톤급 액체로켓엔진 선행개발을 위해 케로신 (Jet-A1)을 이용한 재생냉각 full-scale 연소기를 설계/제작하여 설계점 및 탈설계점 연소시험을 성공적으로 수행하였다. 점화는 안정적이었고 연 소기는 여러 조건(설계점, 탈설계점, 저압)에서도 작동성이 양호하였다. 연소실 벽면을 보호하기 위해 사용한 최외곽 연료분사기에 의한 냉각 및 TBC와 더불어 사용한 재생냉각 성능은 우수한 결과를 보여주었다. 재생냉각 연소기의 분사기, 연소실 벽면, TBC의 경우 full-scale 연소기에서 다양한 작동조건에서 검증하였고 내구성도 확보 했다고 볼 수 있다. 또한, 케로신을 사용한 재생 냉각 및 coking 문제 해결 및 검증하였다. 연소 기의 연소 성능 지표인 연소특성속도가 설계점 에서 약 1750 m/sec로 목표치를 상회하는 결과 를 얻었고 혼합비 2.35에서 최대값이 됨을 알 수 있었다. 지상비추력은 설계점에서 약 269 sec을 얻었으며 혼합비 2.5에서 최대값이 존재함을 알 수 있었다. 본 결과는 30톤급 케로신 재생냉각 액체로켓엔진 연소기의 전체적인 기술 검증 완 료를 의미하는 것으로 향후 대형 액체로켓엔진 연소기 개발에 활용될 수 있을 것이다.

참 고 문 헌

- Huzel, D. K. and Huang, D. H., Modern Engineering for Design of Liquid - Propellant Rocket Engines, Vol. 174, AIAA, 1992
- 한영민, 김승한, 서성현, 조원국, 최환석, 설 우석, 이수용, "지상연소시험용 실물형 고압 연소기의 설계," 한국추진공학회 춘계 학술 대회 논문집, 2005.4, pp.299-304
- 서성현, 김종규, 문일윤, 한영민, 최환석, 이 수용, 조광래, "실물형 액체로켓 연소기 지상 연소 성능결과," 한국추진공학회 추계학술대 회, 2005.11, pp.235-239
- 이광진, 서성현, 한영민, 문일윤, 김종규, 임 병직, 최환석, 실물형 액체로켓 연소기의 연 소안정성 평가시험, 항공우주기술, 제5권 제1 호, 2006, pp.122-131.
- 5. 한영민, 김종규, 문일윤, 이광진, 서성현, 최 환석, 이수용, "실물형 액체로켓엔진 연소기 물냉각 연소시험 성능결과," 한국추진공학회 춘계학술대회, 2006.4
- 6. 한영민, 김종규, 문일윤, 서성현, 최환석, 이 수용, "실물형 액체로켓엔진 연소기 케로신 냉각 연소시험 성능결과," 한국추진공학회 추계학술대회, 2006.11
- 7. 한영민 외, "실물형 재생냉각 액체로켓엔진 연소기 연소시험," 한국항공우주학회 추계학 술대회, 2007.11
- 8. 김종규, 한영민, 서성현, 이광진, 최환석, "지 상연소시험용 실물형 재생냉각 연소기(확대 비 12)의 설계 및 제작," 한국추진공학회 2007년도 추계학술대회 논문집, 2007, pp.114-118
- Rosenberg, S.D., Gage, M.L., Homer, G.D., and Franklin, J.E., "Hydrocarbon-Fuel /Copper Combustion Chamber liner Compatibility, Corrosion Prevention, and Refurbishment," Journal of Propulsion and Power, Vol. 8, No. 6, Nov.-Dec., 1992, pp.1200-1207