• Title/Summary/Keyword: liquid additive

Search Result 213, Processing Time 0.027 seconds

Effect of High Energy Ball Milling on Sintering Behavior and Thermal Conductivity of Direct Nitrided AlN Powder (직접질화법 AlN 분말의 소결거동 및 열전도도에 미치는 고에너지 볼밀링 효과)

  • Park, Hae-Ryong;Kim, Hyung-Tae;Lee, Sung-Min;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.418-425
    • /
    • 2011
  • In this study, a high energy ball milling process was introduced in order to improve the densification of direct nitrided AlN powder. The sintering behavior and thermal conductivity of the AlN milled powder was investigated. The mixture of AlN powder and 5 wt% $Y_2O_3$ as a sintering additive was pulverized and dispersed by a bead mill with very small $ZrO_2$ bead media. The milled powders were sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. The results showed that the sintered density was enhanced with increasing milling time due to the particle refinement as well as the increase in oxygen contents. Appropriate milling time was effective for the improvement of thermal conductivity, but the extensive millied powder formed more fractions of secondary phase during sintering, resulted in the decrease in thermal conductivity. The AlN powder milled for 10min after sintering at $1800^{\circ}C$ revealed the highest thermal conductivity, of 164W/$m{\cdot}K$ in tne densified AlN sintered at $1800^{\circ}C$.

Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development (Al-B-C 조제 β-SiC의 스파크 플라즈마 소결에 미치는 α-SiC seed 첨가 영향: 미세 구조 변화)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. $\beta$-SiC powder with 0, 2, 6, 10 wt% of $\alpha$-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at $1700-1850^{\circ}C$ for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at $100^{\circ}C/min$, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to $1700^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at $1750^{\circ}C$ and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of $\alpha$-SiC seeds into $\beta$-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the $\alpha$-SiC seeds added in $\beta$-SiC, the rate of grain growth decreased with $\alpha$-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

Densification and Microstructure of Ultrafine-sized AlN Powder Prepared by a High Energy Ball Milling Process (고에너지 볼밀링 방법에 의해 얻어진 초미립 AlN 분말의 치밀화 및 미세구조)

  • Park, Hae-Ryong;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% $Y_2O_3$ as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small $ZrO_2$ beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 $m^2/g$ was prepared after milling for 50 min. The milled powders were pressureless-sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. This powder showed excellent sinterability leading to full densification after sintering at $1700^{\circ}C$ for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the $ZrO_2$ impurity.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

A study on the reaction of carbonation in the preparation of lithium carbonate powders (탄산리튬 분말 제조에 있어서 탄산화 반응에 관한 연구)

  • Yang, Jae-Kyo;Jin, Yun-Ho;Yang, Dae-Hoon;Kim, Dae-Weon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • In this study, we carried out the experiment to prepare lithium carbonate powder through gas-liquid reactions with a lithium-containing solution and $CO_2$ gas using lithium hydroxide, lithium chloride, and lithium sulfate. Thermodynamically, the carbonation reaction of a lithium-containing solution showed that aqueous reaction of lithium hydroxide occurs spontaneously, but aqueous reactions of lithium chloride and lithium sulfate does not occur spontaneously. In the case of lithium hydroxide solution, the recovery rate of lithium carbonate was 69.8 % at room temperature ($25^{\circ}C$), and increased to 89.4 % at $60^{\circ}C$. In the case of lithium chloride and lithium sulfate solution, lithium carbonate could be prepared using sodium hydroxide as an additive, but the recovery rates were 19.2 % and 16.7 %, respectively.

Influence of Cholesterol Derivatives on the Several Physicochemical Properties of Oleic acid (Oleic acid의 여러 물리화학적 성질에 미치는 Cholesterol계 유도체의 영향)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.813-820
    • /
    • 2019
  • The influence of cholesterol on the physicochemical properties of the oleic acid was clarified through the measurements of density, viscosity, IR, $^1H$ NMR, self-diffusion coefficient for the oleic acid samples containing a small amount of additives such as cholesterol, cholestanol, cholestane, cholesteryl oleate, benzene, and ethanol. Cholesterol, possessing one OH group and one double bond in its molecular structure, largely increased the viscosity and reduced the self-diffusion coefficient and the intramolecular movement of oleic acid. Oleic acid forms a complex with cholesterol as well as with ethanol. On the basis of these complex formations and the existence of the clusters composed of oleic acid dimers, it was known the role and the fundamental mechanism of cholesterol to the intermolercular and intramolecular movements of oleic acid in the liquid state.

Recent Research Trend in Microneedle Fabrication Using 3D Printing (3D 프린팅을 이용한 마이크로니들 제작의 최신 연구 동향)

  • Choo, Sangmin;Jung, Jae Hwan
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.379-384
    • /
    • 2021
  • A microneedle is a tool that used for drug delivery and diagnosis. Unlike general injections, the microneedle is short in length, enabling effective drug delivery while minimizing pain and risk of infection. Conventionally, microneedles have been manufactured precisely at a nanometer level based on microelectro mechanical systems (MEMS) technology, requiring expensive equipments & maintenance and complicated processes. To address the issues, 3D printing research has been conducted to fabricate microneedles simply, economically, and rapidly. Since 3D printing facilitates to manufacture prototypes and apply feedbacks, it is advantageous for the development and commercialization of microneedle for pharmaceuticals and cosmetics. Therefore, this review will introduce stereolithography (SLA), two-photon polymerization (2PP), dynamic light processing (DLP), continuous liquid interface production (CLIP), and fused deposition modeling (FDM) 3D printing technologies and also highlight research trends for microneedle production using them. Furthermore, the limitation of the current microneedle technology and the direction to be solved in the future will be discussed.

Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle

  • Takahashi, Junichi;Iwasa, Mitsuhiro
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • The suppressive effect of monensin as an ionophore-feed additive on enteric methane (CH4) emission and renewable methanogenesis were evaluated. To clarify the suppressive effect of monensin a respiratory trial with head cage was performed using Holstein-Friesian steers. Steers were offered high concentrate diets (80% concentrate and 20% hay) ad libitum with or without monensin, galacto-oligosaccharides (GOS) or L-cysteine. Steers that received monensin containing diet had significantly (p < 0.01) lower enteric CH4 emissions as well as those that received GOS containing diet (p < 0.05) compared to steers fed control diets. Thermophilic digesters at 55℃ that received manure from steers fed on monensin diets had a delay in the initial CH4 production. Monensin is a strong inhibitor of enteric methanogenesis, but has a negative impact on biogas energy production at short retention times. Effects of the activity of coprophagous insects on CH4 and nitrous oxide (N2O) emissions from cattle dung pats were assessed in anaerobic in vitro continuous gas quantification system modified to aerobic quantification device. The CH4 emission from dungs with adults of Caccobius jessoensis Harold (dung beetle) and the larvae of the fly Neomyia cornicina (Fabricius) were compared with that from control dung without insect. The cumulative CH4 emission rate from dung with dung insects decreased at 42.2% in dung beetles and 77.8% in fly larvae compared to that from control dung without insects. However, the cumulative N2O emission rate increased 23.4% in dung beetles even though it reduced 88.6% in fly larvae compared to dung without coprophagous insects. It was suggested that the antibacterial efficacy of ionophores supplemented as a growth promoter still continued even in the digested slurry, consequently, possible environmental contamination with the antibiotics might be active to put the negative impact to land ecosystem involved in greenhouse gas mitigation when the digested slurry was applied to the fields as liquid manure.

Effect of Temperature and Surfactant on Crystallization of Al-Based Metallic Glass during Pulverization (분쇄 공정의 온도와 분산제 사용이 알루미늄계 금속유리의 결정화에 미치는 영향)

  • Tae Yang Kim;Chae Yoon Im;Suk Jun Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.63-70
    • /
    • 2023
  • In this study, crystallization was effectively suppressed in Al-based metallic glasses (Al-MGs) during pulverization by cryo-milling by applying an extremely low processing temperature and using a surfactant. Before Al-MGs can be used as an additive in Ag paste for solar cells, the particle sizes of the Al-MGs must be reduced by milling. However, during the ball milling process crystallization of the Al-MG is a problem. Once the Al-MG is crystallized, they no longer exhibit glass-like behavior, such as thermoplastic deformation, which is critical to decrease the electrical resistance of the Ag electrode. The main reason for crystallization during the ball milling process is the heat generated by collisions between the particles and the balls, or between the particles. Once the heat reaches the crystallization temperature of the Al-MGs, they start crystallization. Another reason for the crystallization is agglomeration of the particles. If the initially fed particles become severely agglomerated, they coalesce instead of being pulverized during the milling. The coalesced particles experience more collisions and finally crystallize. In this study, the heat generated during milling was suppressed by using cryo-milling with liquid-nitrogen, which was regularly fed into the milling jar. Also, the MG powders were dispersed using a surfactant before milling, so that the problem of agglomeration was resolved. Cryo-milling with the surfactant led to D50 = 10 um after 6 h milling, and we finally achieved a specific contact resistance of 0.22 mΩcm2 and electrical resistivity of 2.81 μΩcm using the milled MG particles.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.