• 제목/요약/키워드: lipopolysaccharides (LPS)

검색결과 129건 처리시간 0.022초

Effects of Gossypetin from Hibiscus sabdariffa on Interleukin-6 Production in Porphyromonas gingivalis Lipopolysaccharide-Stimulated Human Gingival Fibroblasts

  • Ke Huang;Ki-Rim Kim
    • 치위생과학회지
    • /
    • 제23권4호
    • /
    • pp.296-301
    • /
    • 2023
  • Background: Periodontal disease is a major cause of tooth loss in adults and is a representative oral disease commonly suffered by most people around the world. Mainly the proliferation of Gram-negative bacteria and secreted virulence factors cause an inflammatory response and destroy periodontal tissue. Gossypetin, isolated from Hibiscus sabdariffa L, is known to have various pharmacological effects, including antibacterial and anticancer activities. We aimed to confirm the anti-inflammatory effect of gossypetin through interleukin-6 (IL-6) regulation in human gingival fibroblasts (HGFs) stimulated with lipopolysaccharide (LPS) of Porphyromonas gingivalis, a major cause of adult periodontitis. Methods: CCK-8 assay was performed to confirm the concentration-dependent cytotoxicity of gossypetin against HGFs. The secretion level and mRNA expression of IL-6, an inflammation-related cytokine, and the effect of gossypetin on these in HGFs stimulated with P. gingivalis LPS were confirmed by ELISA and qRT-PCR analysis, respectively. Results: Up to a concentration of 100 µM gossypetin with or without P. gingivalis LPS, the survival rate for HGFs was maintained at over 95% and showed no toxicity. ELISA and qRT-PCR analysis results showed that P. gingivalis LPS increased IL-6 secretion and mRNA levels in HGFs compared to the control group. However, this increase in IL-6 was significantly down-regulated by gossypetin treatment in a dose-dependent manner. In particular, 80 µM gossypetin inhibited IL-6 production to the level of the control group. Conclusion: These results indicated that gossypetin attenuated IL-6 production in HGFs stimulated by P. gingivalis LPS, which may ultimately suppress the inflammatory response in periodontal tissue. Therefore, gossypetin may have potential as a natural ingredient for the prevention and treatment of periodontal disease.

Development of animal experimental periodontitis models

  • Do, Min-Jae;Kim, Kyuri;Lee, Haeshin;Cha, Seho;Seo, Taegun;Park, Hee-Jung;Lee, Jeong-Soon;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.147-152
    • /
    • 2013
  • Purpose: An animal periodontitis model is essential for research on the pathogenesis and treatment of periodontal disease. In this study, we have introduced a lipopolysaccharide (LPS) of a periodontal pathogen to the alveolar bone defect of experimental animals and investigated its suitability as a periodontitis model. Methods: Alveolar bone defects were made in both sides of the mandibular third premolar region of nine beagle dogs. Then, the animals were divided into the following groups: silk ligature tied on the cervical region of tooth group, Porphyromonas gingivalis LPS (P.g. LPS)-saturated collagen with silk ligature group, and no ligature or P.g. LPS application group as the control. The plaque index and gingival index were measured at 0 and 4 weeks postoperatively. The animals were then euthanized and prepared for histologic evaluation. Results: The silk ligature group and P.g. LPS with silk ligature group showed a significantly higher plaque index at 4 weeks compared to the control (P<0.05). No significant difference was found in the plaque index between the silk ligature group and P.g. LPS with silk ligature group. The P.g. LPS with silk ligature group showed a significantly higher gingival index compared to the silk ligature group or the control at 4 weeks (P<0.05). Histologic examination presented increased inflammatory cell infiltration in the gingival tissue and alveolar bone of the P.g. LPS with silk ligature group. Conclusions: An additional P.g. LPS-saturated collagen with silk ligature ensured periodontal inflammation at 4 weeks. Therefore, P.g. LPS with silk ligature application to surgically created alveolar bone defects may be a candidate model for experimental periodontitis.

노봉방(露峰房)의 Peroxynitrite 제거 효과 (Peroxynitrite Scavenging Activity of Vespae Nidus)

  • 정지천;신원용
    • 대한한의학회지
    • /
    • 제27권2호
    • /
    • pp.171-181
    • /
    • 2006
  • Objectives : Peroxynitrite($ONOO^-$), superoxide anion(${\cdot}{O_2}^-$) and nitric oxide (NO) is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been implicated in the aging process and age-related disease such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate scavenging activities for $ONOO^-$ and its precursors, NO and ${\cdot}{O_2}^-$ of Vespae Nidus. Methods : Dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used to investigate scavenging activities of $ONOO^-,\;NO,\;{\cdot}{O_2}^-$. Six-months-old ICR mice were used. After mice were injected with lipopolysaccharides(LPS), kidney organization was evaluated. Three comparison groups of ICR mice were used : a normal group, an experimental group that was fed Vespae Nidus extract and then injected with LPS, and a control group that was injected with LPS. Scavenging activities of $ONOO^-,\;NO,\;{\cdot}{O_2}^-$ in these groups were measured in the same way. Results : Vespae Nidus markedly scavenged authentic $ONOO^-,\;{\cdot}{O_2}^-$ and NO. It also inhibited $ONOO^-$ induced by ${\cdot}{O_2}^-$ and NO which are derived trom SIN-1. Furthermore, it inhibited $ONOO^-,\;{\cdot}{O_2}^-$, and NO generation by Vespae Nidus in LPS-treated ICR mouse kidney postmitochondria. Conclusions : These results suggest that Vespae Nidus might be developed as an effective $ONOO^-,\;{\cdot}{O_2}^-$, and NO scavenger for the prevention of the aging process and age-related diseases.

  • PDF

Attenuation of Anemia by Relmα in LPS-Induced Inflammatory Response

  • Lee, Mi-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we propose to evaluate the effect of resistin-like molecule alpha ($Relm{\alpha}$) on the progression of anemia of inflammation. Anemia of inflammation is a common feature of inflammatory disorders, including chronic kidney disease, infections, and rheumatoid arthritis. $Relm{\alpha}$ is highly up-regulated in various inflammatory states, especially those involving asthma, intestinal inflammation, and parasitic diseases, and regulates the pathogenesis of those diseases. However, the role of $Relm{\alpha}$ in anemia of inflammation is unknown. To explore the roles of $Relm{\alpha}$ in anemia of inflammation in vivo, we generated mouse model of the disease by injecting 0.25 mg/kg lipopolysaccharides (LPS) intraperitoneally into $Relm{\alpha}-deficient$ and wild-type (WT) mice daily for 10 days. Research data was expressed as differences between LPS-treated $Relm{\alpha}-deficient$ and WT mice by a two-tailed non-parametric Mann-Whitney U-test using GraphPad Instat program. The results of the study are as follows: LPS-treated $Relm{\alpha}-deficient$ mice had significantly (p<0.05) lower hemoglobin contents, hematocrit levels and red blood cell indices including mean corpuscular volume, mean corpuscular hemoglobin than WT controls. This decrease was accompanied by significant (p<0.05) increase in total white blood cell and monocyte counts in the blood. However, there was no significant difference in mRNA levels of hepatic hepcidin and renal erythropoietin between the two animal groups. Taken together, these results indicates that $Relm{\alpha}$ deficiency exacerbates the anemia by increasing inflammation, suggesting therapeutic value of $Relm{\alpha}$ in the treatment of anemia of inflammation.

사람 치주인대세포에서 Lipopolysaccharide와 니코틴으로 유도된 iNOS와 COX-2 발현에 NFATc의 관여 (NFATc Mediates Lipopolysaccharide and Nicotine-Induced Expression of iNOS and COX-2 in Human Periodontal Ligament Cells)

  • 이상임;유지수
    • 치위생과학회지
    • /
    • 제15권6호
    • /
    • pp.753-760
    • /
    • 2015
  • 숙주 면역 반응과 면역 체계는 치주 질환에 대한 개인의 감수성의 주요 원인이다. 세균 감염과 흡연은 치주 조직의 파괴의 원인과 진행에 관여하는 중요한 환경 위험 요인이다. 따라서, 본 연구는 사람 치주인대세포에서 LPS와 니코틴이 전염증성 사이토카인인 iNOS/COX-2의 발현과 NO/$PGE_2$ 생산에 미치는 영향을 알아보고 NFATc1가 어떤 기전으로 항염작용을 하는지 밝히고자 하였다. LPS와 니코틴을 처리한 사람 치주인대세포에서 iNOS/COX-2의 발현과 함께 NO/$PGE_2$ 생산은 증가되었다. NFATc1 inhibitor인 CsA는 LPS와 니코틴에 의해 유도되는 iNOS/COX-2의 발현과 함께 NO/$PGE_2$ 생산을 감소시켰다. 이러한 연구 결과로 볼 때, NFAT signaling pathway가 LPS와 니코틴에 의한 iNOS/COX-2의 발현을 조절하여 NO/$PGE_2$ 매개 염증에 대해 방어할 수 있다고 생각된다.

Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS

  • Leem, Yea-Hyun;Park, Jin-Sun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.295-302
    • /
    • 2021
  • Microglial priming is the process of microglial proliferation and activation in response to neurodegeneration and abnormal protein accumulation. Priming makes microglia susceptible to secondary inflammatory stimuli and causes exaggerated inflammatory responses. In the present study, we established a microglial priming model in mice by administering a single injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg). MPTP induced microglial activation without dopaminergic degeneration; however, subsequent treatment with a sub-toxic dose of lipopolysaccharides (LPS) induced an amplified inflammatory response and caused nigrostriatal dopaminergic degeneration. These pathological and inflammatory changes, including microglial activation and dopaminergic cell loss in the substantia nigra (SN) area were reversed by papaverine (PAP) administration. In addition, MPTP/LPS enhanced interleukin-1β (IL-1β) expression and processing via nod-like receptor protein 3 (NLRP3) inflammasome activation in the SN region of mice. However, PAP treatment suppressed inflammasome activation and subsequent IL-1β maturation. Moreover, PAP inhibited nuclear factor-κB (NF-κB) and enhanced cAMP-response element binding protein (CREB) activity in the SN of MPTP/LPS mice. These results suggest that PAP inhibits the activation of NLRP3 inflammasome by modulating NF-κB and CREB signaling pathways, which results in reduced microglial activation and neuronal cell death. Thus, PAP may be a potential candidate for the treatment of Parkinsons's disease, which is aggravated by systemic inflammation.

치주염 유발 세균 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis에 의한 committed osteoclast precursor 분화 증가 (Augmented Osteoclastogenesis from Committed Osteoclast Precursors by Periodontopathic Bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis)

  • 박옥진;권영각;윤철희;한승현
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.557-562
    • /
    • 2016
  • 치주질환은 만성염증성 질환으로 치조골소실을 일으켜 성인치아상실을 유발하는 요인 중 하나이다. 그람 음성세균인 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis는 치주질환환자의 병소에서 쉽게 동정된다. 지질다당체(Lipopolysaccharide; LPS)는 그람 음성세균의 핵심 독력인자로 알려져 있다. 이러한 세균과 LPS는 파골세포에 의한 골소실을 조절하는 요인 중 하나이다. 그러므로 본 연구에서는 동물모델을 활용하여 A. actinomycetemcomitans와 P. gingivalis의 의한 골소실 여부를 확인하고, 기전규명을 위하여 A. actinomycetemcomitans, P. gingivalis, A. actinomycetemcomitans와 P. gingivalis에서 분리한 LPS에 의한 파골세포분화 영향을 연구하였다. 열사멸한 A. actinomycetemcomitans (HKAa)와 열사멸한 P. gingivalis (HKPg)가 복강으로 투여된 쥐의 대퇴골은 대조군에 비해 감소된 골량을 보여주었다. 이러한 골소실의 증가가 파골세포분화 때문인지 확인하기 위해 파골세포분화를 연구한 결과, bone marrow-derived macrophage (BMM)의 RANKL-매개 파골세포분화를 감소시켰으나, committed osteoclast precursor의 파골세포분화를 유도함을 확인하였다. 세균에 의한 파골세포분화 결과와 동일하게 A. actinomycetemcomitans와 P. gingivalis에서 분리한 LPS 역시 RANKL-매개 파골세포분화는 감소시키고, committed osteoclast precursor의 파골세포분화를 유도하였다. 결과적으로 치주원인균인 A. actinomycetemcomitans와 P. gingivalis는 committed osteoclast precursor의 파골세포분화를 증가시키는데, 이 세균들의 LPS가 핵심 역할을 수행하는 것으로 판단되며 이를 통해 골 흡수를 유발함을 알 수 있었다.

E. coli lipopolysaccharides로 유도된 사람 호중구에서 CD14, Toll-like receptors, cytoskeletal inhibitors 그리고 $NF-{\kappa}B$ inhibitor가 MMP-8 분비에 미치는 영향 (Effect of CD14, Toll-like receptors, cytoskeletal inhibitors and $NF-{\kappa}B$ inhibitor on MMP-8 release from human neutrophils induced by E. coli lipopolysaccharides.)

  • 양승민;김태일;설양조;이용무;구영;정종평;한수부;류인철
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.427-436
    • /
    • 2005
  • Objective: MMP-8 is a neutrophil enzyme and its level increases in some inflammatory diseases, including periodontal disease. We knew that the lipopolysaccharide of E.coli(E-LPS) induced MMP-8 release from human neutrophils. E-LPS is known to induce the production and release of inflammatory cytokines through CD14, Toll-like receptor(TLR). In the present study, we investigated whether MMP-8 release by E-LPS is induced via CD14-TLR pathway and the cellular mechanism of MMP-8 release in human neutrophils. Material and methods: Human neutrophils were isolated from the peripheral blood of healthy donors and pre-incubated in medium containing antibodies against CD14, anti-TLR2 and anti-TLR4 or several inhibitors of microtubules and microfilaments and then incubated with E-LPS. The cells were treated TPCK and E-LPS simultaneously. The MMP-8amount in the culture medium was determined using ELISA. Results: E-LPS increased MMP-8release from neutrophils and its induction was inhibited by anti-CD14 and anti-TLR4 but not by anti-TLR2 antibodies. The inhibitors of microtubule and microfilament polymerization significantly decreased E-LPS-induced MMP-8release. TPCK inhibited E-LPS-induced MMP-8 release. Conclusion: These results suggest that MMP-8 release is induced by E-LPS via the CD14-TLR4 signal pathway in human neutrophils and may be depedent on microtubule and microfilament systems and $NF-{\kappa}B$ pathway.

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia;Khan, Afshan;Paul, Arghya;Coussa-Charley, Michael;Marinescu, Daniel;Tomaro-Duchesneau, Catherine;Shao, Wei;Kahouli, Imen;Prakash, Satya
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권4호
    • /
    • pp.518-526
    • /
    • 2013
  • Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

Understanding of Interactions Between Acanthamoeba and Escherichia coli on Cell-Based System

  • Jung, Suk-Yul
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.173-176
    • /
    • 2011
  • Free-living Acanthamoeba are eukaryotic protozoan organisms that are widely distributed in the air, water, etc such as environment. Acanthamoeba ingest the Escherichia coli which will replicate in cytoplasm of Acanthamoeba. Bacterial pathogenicity or virulence is one of important determinant factors to survive in free-living Acanthamoeba and otherwise Acanthamoebic pathogenicity is also an important factor for their interactions. Bacterial association with pathogenic strain of Acanthamoeba T1 and T4 was lower about two times than non-pathogenic T7. Bacterial invasion percentages into T1 were higher about three times than T7 but bacterial survival in T7 was increased as T1. The capsule-deletion mutant exhibited limited ability for invasion/uptake by and survival inside pathogenic Acanthamoeba T4. E. coli-outer membrane protein A (OmpA) decreased bacterial association with A. castellanii by about three times and it had higher effects than lipopolysaccharides (LPS). Under favorable conditions, the mutants were not survived in Acanthamoeba up to 24 h incubation. Therefore, this review will report pathogenic and non-pathogenic Acanthamoeba strains interactions with E. coli and its several mutants, i.e., capsule, OmpA and LPS.