Browse > Article
http://dx.doi.org/10.4014/mbl.1608.08010

Augmented Osteoclastogenesis from Committed Osteoclast Precursors by Periodontopathic Bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis  

Park, Ok-Jin (Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry)
Kwon, Yeongkag (Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry)
Yun, Cheol-Heui (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
Han, Seung Hyun (Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.4, 2016 , pp. 557-562 More about this Journal
Abstract
Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis are gram-negative bacteria frequently found in lesions from patients with periodontitis manifesting alveolar bone loss. Lipopolysaccharides are a major virulence factor of gram-negative bacteria. Bone resorption is known to be regulated by bacteria and their virulence factors. In the present study, we investigated the effects of A. actinomycetemcomitans and P. gingivalis on bone resorption. Heat-killed A. actinomycetemcomitans (HKAa) and heatkilled P. gingivalis (HKPg) induced bone loss in the femurs of mice after intraperitoneal administration. HKAa and HKPg augmented the differentiation of committed osteoclast precursors into osteoclasts, while they inhibited the differentiation of bone marrow-derived macrophages into osteoclasts. Concordant with the effects of the heat-killed whole cells, LPS purified from A. actinomycetemcomitans and P. gingivalis also augmented osteoclast differentiation from committed osteoclast precursors but attenuated it from bone marrow-derived macrophages. Taken together, these results suggest that the whole cells and lipopolysaccharides of A. actinomycetemcomitans and P. gingivalis induce the differentiation of committed osteoclast precursors into osteoclasts, potentially contributing to bone resorption in vivo.
Keywords
Aggregatibacter actinomycetemcomitans; Porphyromonas gingivalis; lipopolysaccharide; osteoclast; bone loss;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang W, Ju J, Rigney T, Tribble G. 2014. Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model. BMC Oral. Health. 14: 89.   DOI
2 Zou W, Bar-Shavit Z. 2002. Dual modulation of osteoclast differentiation by lipopolysaccharide. J. Bone. Miner. Res. 17: 1211-1218.   DOI
3 Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. 1999. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J. Exp. Med. 190: 1741-1754.   DOI
4 Feng X, McDonald JM. 2011. Disorders of bone remodeling. Annu. Rev. Pathol. 6: 121-145.   DOI
5 Flemmig TF. 1999. Periodontitis. Ann. Periodontol. 4: 32-38.   DOI
6 Kopydlowski KM, Salkowski CA, Cody MJ, van Rooijen N, Major J, Hamilton TA, Vogel SN. 1999. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J. Immunol. 163: 1537-1544.
7 Irfan UM, Dawson DV, Bissada NF. 2001. Epidemiology of periodontal disease: a review and clinical perspectives. J. Int. Acad Periodontol. 3: 14-21.
8 Kang J, de Brito Bezerra B, Pacios S, Andriankaja O, Li Y, Tsiagbe V, et al. 2012. Aggregatibacter actinomycetemcomitans infection enhances apoptosis in vivo through a caspase-3-dependent mechanism in experimental periodontitis. Infect. Immun. 80: 2247-2256.   DOI
9 Kim J, Yang J, Park OJ, Kang SS, Kim WS, Kurokawa K, et al. 2013. Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation. J. Bone. Miner. Res. 28: 2381-2391.   DOI
10 McArdle A, Marecic O, Tevlin R, Walmsley GG, Chan CK, Longaker MT, et al. 2015. The role and regulation of osteoclasts in normal bone homeostasis and in response to injury. Plast. Reconstr. Surg. 135: 808-816.   DOI
11 Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22: 240-273.   DOI
12 Munford RS. 2008. Sensing gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect. Immun. 76: 454-465.   DOI
13 Papapanou PN. 1996. Periodontal diseases: epidemiology. Ann. Periodontol. 1: 1-36.   DOI
14 Rogers JE, Li F, Coatney DD, Rossa C, Bronson P, Krieder JM, et al. 2007. Actinobacillus actinomycetemcomitans lipopolysaccharide-mediated experimental bone loss model for aggressive periodontitis. J. Periodontol. 78: 550-558.   DOI
15 Park OJ, Cho MK, Yun CH, Han SH. 2015. Lipopolysaccharide of Aggregatibacter actinomycetemcomitans induces the expression of chemokines MCP-1, MIP-1alpha, and IP-10 via similar but distinct signaling pathways in murine macrophages. Immunobiology 220: 1067-1074.   DOI
16 Park OJ, Yang J, Kim J, Yun CH, Han SH. 2015. Enterococcus faecalis attenuates the differentiation of macrophages into osteoclasts. J. Endod. 41: 658-662.   DOI
17 Park OJ, Yi H, Jeon JH, Kang SS, Koo KT, Kum KY, et al. 2015. Pyrosequencing analysis of subgingival microbiota in distinct periodontal conditions. J. Dent. Res. 94: 921-927.   DOI
18 Ready D, D'Aiuto F, Spratt DA, Suvan J, Tonetti MS, Wilson M. 2008. Disease severity associated with presence in subgingival plaque of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia, singly or in combination, as detected by nested multiplex PCR. J. Clin. Microbiol. 46: 3380-3383.   DOI
19 Rodan GA. 1998. Bone homeostasis. Proc. Natl. Acad. Sci. USA 95: 13361-13362.   DOI
20 Takami M, Kim N, Rho J, Choi Y. 2002. Stimulation by toll-like receptors inhibits osteoclast differentiation. J. Immunol. 169: 1516-1523.   DOI
21 Trouillet-Assant S, Gallet M, Nauroy P, Rasigade JP, Flammier S, Parroche P, et al. 2015. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J. Infect. Dis. 211: 571-581.   DOI
22 Van Dyke TE, Sheilesh D. 2005. Risk factors for periodontitis. J. Int. Acad. Periodontol. 7: 3-7.
23 Wright JA, Nair SP. 2010. Interaction of staphylococci with bone. Int. J. Med. Microbiol. 300: 193-204.   DOI
24 Varoga D, Wruck CJ, Tohidnezhad M, Brandenburg L, Paulsen F, Mentlein R, et al. 2009. Osteoblasts participate in the innate immunity of the bone by producing human beta defensin-3. Histochem. Cell Biol. 131: 207-218.   DOI