• 제목/요약/키워드: lipid mobilization

검색결과 20건 처리시간 0.023초

Mobilization of Food Reserves and Ultrastructural Changes in Cotyledons of Germinating Soybean Seeds an Seedlings

  • Song, Young-Sun;Cho, Chung-Won;Mark, H. Love
    • Preventive Nutrition and Food Science
    • /
    • 제6권1호
    • /
    • pp.29-37
    • /
    • 2001
  • The mobilization of food reserves and ultrastructural changes in th cotyledons of germinating soybean seeds (Glycine max L. Mer. Cultivar Amsoy) and seedlings were studied by using light and transmission electron microscopy. When germinating began, the cotyledon tissues were packed with protein an lipid bodies. Mobilization of the reserves started in epidermis and vascular bundles. After three days of seedling growth, significant reductions of protein and lipid bodies were observed; concurrently, the numbers of starch grains, glyoxysoms, and mitochondria were increased. These ultrastructural changes are discussed with reference to the metabolism of the germinating soybean seeds and seedlings.

  • PDF

Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings

  • Kim, Seung-Jin;Choi, Ho-Jung;Jung, Chung-Hwan;Park, Sung-Soo;Cho, Seung-Rye;Oh, Se-Jong;Kim, Eung-Seok
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.787-794
    • /
    • 2010
  • Calcium plays a role as a signaling molecule in various cellular events. It has been reported that calcium suppresses adipocyte differentiation only in the early phase of adipogenesis. Herein, we demonstrate that treatment of A23187, a mobilizer of intracellular calcium, on day 4 post adipocyte differentiation could still reduce lipid accumulation in differentiating 3T3-L1 cells for 48 h. In addition, luciferase reporter gene and RT-Q-PCR assays demonstrate that A23187 can selectively inhibit transcriptional activities and expression of PPAR$\gamma$ and LXR$\alpha$, suggesting that A23187 may reduce lipid accumulation in the late phase of adipogenesis via downregulation of PPAR$\gamma$ and LXR$\alpha$ expression and transactivation. Moreover, inhibition of HDAC activity by trichostatin A (TSA) partially blocked A23187-mediated downregulation of transcriptional activities of PPAR$\gamma$ and LXR$\alpha$. Together, our data demonstrate that calcium mobilization inhibits expression and transcriptional activities of PPAR$\gamma$ and LXR$\alpha$, resulting in reduced lipid accumulation in differentiating adipocytes, and thus, mobilization of intracellular calcium in adipocytes may serve as a new preventive and therapeutic approach for obesity.

비행중인 담배나방의 혈림프내 지질과 탄수화물의 함량변화 (Lipid and Carbohydrate Contents in the Adult Hemolymph during Flight of the Oriental Tobacco Budworm (Helicoverpa assulta (Guenee)))

  • 정진교;부경생
    • 한국응용곤충학회지
    • /
    • 제31권4호
    • /
    • pp.329-337
    • /
    • 1992
  • 본 연구는 비행중인 담배나방(Helicoverpa assulta (Guenee))성충의 혈림프내 지질과 탄수화물의 함량변화와 그들의 호르몬조절가능을 조사하기 위하여 수행되었다. 비행초기 몇분동안에 암수 모두 빠른 지질증가반응을 보였고, 약 2기간까지 증가된 수준이 유지되었다. 비행중 혈림프내 탄수화물농도는 거의 변화가 없었지만, 수컷에서는 비행후 10분 동안 약간의 농도증가가 있었다. 합성 지질동원호르몬(Lom-AKH-II), 당동원호르몬(Bld-HrTH), 담배나방 자신의 뇌-카디아카체 추출물들 모두 담배나방의 혈림프내 지질과 당함량을 높여주었는데, 지질이 당보다 훨씬 더 높게 나타났다. 이상의 결과로 주로 지질이 담배나방의 주 비행연료로 사용되고 혈림프내 지질함량은 지질동원호르몬의 조절을 받는 것으로 보여진다. 또한 담배나방에는 지질동원호르몬과 당동원 호르몬이 같이 있을 수 있으며, 이들 펩티드들의 구조는 Mass-AKH, Hez-HrTH, Lom-AkH-II, Pea-HrTH 등의 구조와 유사할 것이라고 유추되었다.

  • PDF

젖소에서 epinephrine 및 insulin에 의한 대사 조절 (Roles of Epinephrine and Insulin in the Regulation of Metabolism in Dairy Cow)

  • 김진욱
    • 농업생명과학연구
    • /
    • 제43권4호
    • /
    • pp.15-20
    • /
    • 2009
  • 젖소의 분만 전후기는 일반적으로 전환기라고 칭하며 분만후 유생산을 준비하기 위해 동물체내 대사 및 생리적 상태가 급격히 변화하는 시기라 할 수 있다. 젖소는 이 시기에 간조직에서 당신합성을 통해 유당합성을 위한 glucose의 생산을 촉진하고, 지방조직에서는 분만 전부터 지질을 축적하고 비유개시에 맞추어 혈중 NEFA (nonesterified fatty acid)의 농도를 증가시켜 유지방 합성을 준비 한다. 이러한 대사조절에 epinephrine 및 insulin이 조절 호르몬으로 작용하여 유생산을 위한 탄수화물 및 지질대사를 변화시키고 사료 섭취량의 부족에 기인한 전체 에너지의 감소를 체내 영양소의 재분배로 충족시킨다.

Effects of Energy Intake on Performance, Mobilization and Retention of Body Tissue, and Metabolic Parameters in Dairy Cows with Special Regard to Effects of Pre-partum Nutrition on Lactation - A Review -

  • Remppis, S.;Steingass, H.;Gruber, L.;Schenkel, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권4호
    • /
    • pp.540-572
    • /
    • 2011
  • The present review focuses on the effects of energy intake on performance, changes in body tissue during lactation, and metabolic parameters in dairy cows. Especially, pre-partum nutrition and its influence on lactation are emphasized. In recent decades the increase in genetic potential of dairy cows has increased milk yield. This fact sharpens the problem of a negative energy balance in early lactation because the amount of energy required for maintenance and milk production exceeds the amount of energy cows can consume. Around parturition, reduced feed intake reinforces the situation. Continuing negative energy balance causes decreasing milk yield, fertility problems, and incidence of metabolic diseases. Hence, the cow has to rely on body reserves that were stored in late lactation and the dry period. It is evident that the nutritional status pre-partum acts as the key factor for milk yield and fertility parameters in the following lactation. Cows overfed during the foregoing gestation and which have gained large quantities of body fat have lower dry matter intake along with the need to mobilize larger quantities of body reserves in lactation. The milk yield in the following lactation is lower than in cows fed according to their requirements. Cows restrictively fed in late gestation have a higher feed intake in lactation and a lower mobilization of body reserves. The effect of energy intake post-partum plays only a minor role for performance parameters in lactation. Lipid mobilized from body reserves makes a substantial contribution to the energetic cost of milk production in early lactation and adipose tissue undergoes specific metabolic alterations. Adipose tissue is degraded to free fatty acids, which are used in liver for energy purposes. High lipid mobilisation promotes the development of a fatty liver and therefore a reduced gluconeogenesis.

Effect of Defibrotide on Rat Reflux Esophagitis

  • Kim, Hyoung-Ki;Choi, Soo-Ran;Choi, Sang-Jin;Chio, Myung-Sup;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권6호
    • /
    • pp.319-327
    • /
    • 2004
  • This study was aimed at evaluating the effect of defibrotide on the development of the surgically induced reflux esophagitis, on gastric secretion, lipid peroxidation, polymorphonuclear leukocytes (PMNs) accumulation, polymorphonuclear leukocytes adherence, superoxide anion and hydrogen peroxide production in PMNs, scavenge of hydroxyl radical and hydrogen peroxide, cytokine (interleukin-1 ${\beta}$, tumor necrosis $factor-{\alpha}$) production in blood, and intracelluar calcium mobilization in PMNs. Defibrotide did not inhibit the gastric secretion and not change the gastric pH. Treatment of esophagitis rats with defibrotide inhibited lipid peroxidation, and myeloperoxidase (MPO) in the esophagus in comparison with untreated rats. Defibrotide significantly decreased the PMN adherence to superior mesenteric artery endothelium in a dose-dependent manner, Superoxide anion and hydrogen peroxide production in $1{\mu}M$ formylmethionylleucylphenylalanine (fMLP)- or $0.1{\mu}g/ml$ N-phorbol 12-myristate 13-acetate (PMA)-activated PMNs was inhibited by defibrotide in a dose-dependent fashion. Defibrotide effectively scavenged the hydrogen peroxide but did not scavenge the hydroxyl radical. Treatment of esophagitis rats with defibrotide inhibited interleukin-1 ${\beta}$ production in the blood in comparison with untreated rats, but tumor necrosis $factor-{\alpha}$ production was not affected by defibrotide. The fMLP-induced elevation of intracellular calcium in PMNs was inhibited by defibrotide. The results of this study suggest that defibrotide may have partly beneficial protective effects against reflux esophagitis by the inhibition lipid peroxidation, PMNs accumulation, PMNs adherence to endothelium, reactive oxygen species production in PMNs, inflammatory cytokine production(i.e. interleukin-1 ${\beta}$), and intracellular calcium mobilization in PMNs in rats.

Roles for the lipid-signaling enzyme MitoPLD in mitochondrial dynamics, piRNA biogenesis, and spermatogenesis

  • Gao, Qun;Frohman, Michael A.
    • BMB Reports
    • /
    • 제45권1호
    • /
    • pp.7-13
    • /
    • 2012
  • Phospholipase D (PLD), a superfamily of signaling enzymes that most commonly generate the lipid second messenger Phosphatidic Acid (PA), is found in diverse organisms from bacteria to man and functions in multiple cellular pathways. A fascinating member of the family, MitoPLD, is anchored to the mitochondrial surface and has two reported roles. In the first role, MitoPLD-generated PA regulates mitochondrial shape through facilitating mitochondrial fusion. In the second role, MitoPLD performs a critical function in a pathway that creates a specialized form of RNAi required by developing spermatocytes to suppress transposon mobilization during meiosis. This spermatocyte-specific RNAi, known as piRNA, is generated in the nuage, an electron-dense accumulation of RNA templates and processing proteins that localize adjacent to mitochondria in a structure also called intermitochondrial cement. In this review, we summarize recent findings on these roles for MitoPLD functions, highlighting directions that need to be pursued to define the underlying mechanisms.

김치의 급여가 흰쥐의 체내 지질함량과 비장 면역세포 증식능력에 미치는 영향 (The Effects of Kimchi Intake on Lipid Contents of Body and Mitogen Response of Spleen Lymphocytes in Rats)

  • 김지연;이연숙
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1200-1207
    • /
    • 1997
  • Effects of kimchi on lipid metabolism and immune function were studied in experiments using 63mals SD rats fed 6 inds of Baechu-kimchi containing diet during 4 weeks. Three kinds of freeze dried kimchi differ in fermentation period (not fermented, 3-, 6-week-fermented at 4$^{\circ}C$) were added at 5%, 10% of the diet containing 15% lard. The levels of serum total lipid and triglyceride and the content of liver total lipid and triglyceride of all kimchi groups were lower than those of a control group. But the levels of serum and liver cholesterol is not affected by kimchi intake. The triglyceride concentration of epididymal fat pad and feces of kimchi groups were higher than those of a control group. The food efficiency ratio, epididymal fat pad weight of 3-, 6-week-fermented kimchi 10% groups were significantly lower than control and not-fermented kimchi groups. Especially 6-week-fermented kimchi groups showed adipocytes, less in number and larger in size than those of other groups. The blastogenesis of spleen lymphocytes to LPS was higher in rats fed fermented kimchi diets than rats fed control and not-fermented kimchi diet. These results suggest that kimchi stimulates lipid mobilization to epididymal fat pad and lipid excretion via feces, so lower serum and liver triglyceride concentration. The fermented kimchi stimulate the proliferation of B cell and lower the lipid accumulation in epididymal fat pad, especially kimchi fermented for 6 weeks at 4$^{\circ}C$ lower the adipose cell number.

  • PDF

Cyclosporine A and bromocriptine attenuate cell death mediated by intracellular calcium mobilization

  • Kim, In-Ki;Park, So-Jung;Park, Jhang-Ho;Lee, Seung-Ho;Hong, Sung-Eun;Reed, John C.
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.482-487
    • /
    • 2012
  • To identify the novel inhibitors of endoplasmic reticulum stress-induced cell death, we performed a high throughput assay with a chemical library containing a total of 3,280 bioactive small molecules. Cyclosporine A and bromocriptine were identified as potent inhibitors of thapsigargiin-induced cell death (cut-off at $4{\sigma}$ standard score). However, U74389G, the potent inhibitor of lipid peroxidation had lower activity in inhibiting cell death. The inhibition effect of cyclosporine A and bromocriptine was specific for only thapsigargin-induced cell death. The mechanism of inhibition by these compounds was identified as modification of the expression of glucose regulated protein-78 (GRP-78/Bip) and inhibition of phosphorylation of p38 mitogen activated protein kinase (MAPK). However, these compounds did not inhibit the same events triggered by tunicamycin, which was in agreement with the cell survival data. We suggest that the induction of protective unfolded protein response by these compounds confers resistance to cell death. In summary, we identified compounds that may provide insights on cell death mechanisms stimulated by ER stress.

오이 떡잎의 발달에서 지방 대사관련 유전자의 발현과 아세틸 단위체의 2차 경로 가능성 (Metabolic Gene Expression in Lipid Metabolism during Cotyledon Development in Cucumbers and the Possibility of a Secondary Transport Route of Acetyl Units)

  • 차현정;김대재
    • 생명과학회지
    • /
    • 제24권10호
    • /
    • pp.1055-1062
    • /
    • 2014
  • 본 연구는 떡잎의 발달 동안 지방의 유동 및 대사와 관련된 오이 유전자들의 발현을 조사하여 유전자의 활성을 비교하고자 하였으며, 글라이옥시좀과 미토콘드리아 사이의 탄소원(아세틸 단위)의 가능한 경로를 탐색하고자 하였다. 네 곳의 세포 내 소기관인 글라이옥시좀(퍼옥시좀), 미토콘드리아, 엽록체 및 세포질에서 작동하는 중요 대사경로의 10개 유전자들이 조사되었다. 나아가 암소에서 발아한 유식물체의 발아 초기 반응과 이후 3일간 빛을 주었을 때의 반응을 조사하였다. 역전사-중합효소연쇄반응(RT-PCR)에 따르면, 유식물체의 발달 동안에 저장지방의 유동과 관련된 Thio2, ICL 및 MS 유전자는 항상 유사한 유전자 발현 양상을 나타냈다. 오이의 발아 초기에 BOU 유전자와 함께 ICL 및 MS 유전자의 공조된 발현은 퍼옥시좀과 미톤콘드리아 사이에 아세틸 단위의 2차 통로의 존재 가능성에 대한 강한 증거이다. 앞서 보고된 연구에서 보여준 BOU 활성에서처럼 BOU 유전자는 빛 의존성으로 암소에서는 세포막의 미약한 발달로 인하여 활성이 저하됨을 암시한다. 나머지의 유전자들은 떡잎이 초록색으로 발달하고 노쇠화 할 때까지 떡잎의 전 발달 기간 동안에 활성을 나타냈다. 본 연구에서는 아세틸 단위의 운반에 대한 새로운 추가적 제안으로써 지방 저장 종자의 발아와 오이 떡잎의 발달과 관련된 유전자의 발현을 통해 처음으로 확인하였다.