Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.1.7

Roles for the lipid-signaling enzyme MitoPLD in mitochondrial dynamics, piRNA biogenesis, and spermatogenesis  

Gao, Qun (Department of Pharmacology & Center for Developmental Genetics, Stony Brook University)
Frohman, Michael A. (Department of Pharmacology & Center for Developmental Genetics, Stony Brook University)
Publication Information
BMB Reports / v.45, no.1, 2012 , pp. 7-13 More about this Journal
Abstract
Phospholipase D (PLD), a superfamily of signaling enzymes that most commonly generate the lipid second messenger Phosphatidic Acid (PA), is found in diverse organisms from bacteria to man and functions in multiple cellular pathways. A fascinating member of the family, MitoPLD, is anchored to the mitochondrial surface and has two reported roles. In the first role, MitoPLD-generated PA regulates mitochondrial shape through facilitating mitochondrial fusion. In the second role, MitoPLD performs a critical function in a pathway that creates a specialized form of RNAi required by developing spermatocytes to suppress transposon mobilization during meiosis. This spermatocyte-specific RNAi, known as piRNA, is generated in the nuage, an electron-dense accumulation of RNA templates and processing proteins that localize adjacent to mitochondria in a structure also called intermitochondrial cement. In this review, we summarize recent findings on these roles for MitoPLD functions, highlighting directions that need to be pursued to define the underlying mechanisms.
Keywords
Mitochondria; Morphology; Mouse models; Phospholipase D; piRNA; Spermatogenesis;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
  • Reference
1 Nishikimi, A., Fukuhara, H., Su, W., Hongu, T., Takasuga, S., Mihara, H., Cao, Q., Sanematsu, F., Kanai, M., Hasegawa, H., Tanaka, Y., Shibasaki, M., Kanaho, Y., Sasaki, T., Frohman, M. A. and Fukui, Y. (2009) Sequential Regulation of DOCK2 Dynamics by Two Phospholipids during Neutrophil Chemotaxis. Science 324, 384-387.   DOI   ScienceOn
2 Dall'Armi, C., Hurtado-Lorenzo, A., Tian, H., Morel, E., Nezu, A., Chan, R. B., Yu, W. H., Robinson, K. S., Yeku, O., Small, S. A., Duff, K., Frohman, M. A., Wenk, M. R., Yamamoto, A. and Di Paolo, G. (2010) The phospholipase D1 pathway modulates macroautophagy. Nat. Commun. 1, 142.   DOI   ScienceOn
3 Tsukahara, T., Tsukahara, R., Fujiwara, Y., Yue, J., Cheng, Y., Guo, H., Bolen, A., Zhang, C., Balazs, L., Re, F., Du, G., Frohman, M. A., Baker, D. L., Parrill, A. L., Uchiyama, A., Kobayashi, T., Murakami-Murofushi, K. and Tigyi, G. (2010) Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic acid. Mol. Cell. 39, 421-432.   DOI   ScienceOn
4 Chambeyron, S., Popkova, A., Payen-Groschene, G., Brun, C., Laouini, D., Pelisson, A. and Bucheton, A. (2008) piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline. Proc. Natl. Acad. Sci. U.S.A. 105, 14964-14969.   DOI   ScienceOn
5 Ronsseray, S., Josse, T., Boivin, A. and Anxolabehere, D. (2003) Telomeric transgenes and trans-silencing in Drosophila. Genetica. 117, 327-335.   DOI   ScienceOn
6 Josse, T., Maurel-Zaffran, C., de Vanssay, A., Teysset, L., Todeschini, A. L., Delmarre, V., Chaminade, N., Anxolabehere, D. and Ronsseray, S. (2008) Telomeric trans-silencing in Drosophila melanogaster: tissue specificity, development and functional interactions between non-homologous telomeres. PLoS One 3, e3249.   DOI   ScienceOn
7 Szakmary, A., Reedy, M., Qi, H. and Lin, H. (2009) The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. J. Cell Biol. 185, 613-627.   DOI   ScienceOn
8 Watanabe, T., Tomizawa, S., Mitsuya, K., Totoki, Y., Yamamoto, Y., Kuramochi-Miyagawa, S., Iida, N., Hoki, Y., Murphy, P. J., Toyoda, A., Gotoh, K., Hiura, H., Arima, T., Fujiyama, A., Sado, T., Shibata, T., Nakano, T., Lin, H., Ichiyanagi, K., Soloway, P. D. and Sasaki, H. (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848-852.   DOI   ScienceOn
9 Su, W., Yeku, O., Olepu, S., Genna, A., Park, J. S., Ren, H., Du, G., Gelb, M., Morris, A. and Frohman, M. A. (2009) FIPI, a Phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Mol. Pharmacol. 75, 437-446.   DOI   ScienceOn
10 Su, W., Chen, Q. and Frohman, M. A. (2009) Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 5, 1477-1486.   DOI   ScienceOn
11 Scott, S. A., Selvy, P. E., Buck, J. R., Cho, H. P., Criswell, T. L., Thomas, A. L., Armstrong, M. D., Arteaga, C. L., Lindsley, C. W. and Brown, H. A. (2009) Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat. Chem. Biol. 5, 108-117.   DOI   ScienceOn
12 Schupbach, T. and Wieschaus, E. (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics. 129, 1119-1136.
13 Sung, T. C., Roper, R. L., Zhang, Y., Rudge, S. A., Temel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J. and Frohman, M. A. (1997) Mutagenesis of phospholipase D defines a superfamily including a trans- Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519-4530.   DOI   ScienceOn
14 Malone, C. D., Brennecke, J., Dus, M., Stark, A., McCombie, W. R., Sachidanandam, R. and Hannon, G. J. (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522-535.   DOI   ScienceOn
15 Olivieri, D., Sykora, M. M., Sachidanandam, R., Mechtler, K. and Brennecke, J. (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 29, 3301-3317.   DOI   ScienceOn
16 Saito, K., Inagaki, S., Mituyama, T., Kawamura, Y., Ono, Y., Sakota, E., Kotani, H., Asai, K., Siomi, H. and Siomi, M. C. (2009) A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296-1299.   DOI   ScienceOn
17 Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R. and Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103.   DOI   ScienceOn
18 Saito, K., Ishizu, H., Komai, M., Kotani, H., Kawamura, Y., Nishida, K. M., Siomi, H. and Siomi, M. C. (2010) Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 24, 2493-2498.   DOI   ScienceOn
19 Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J. and Tuschl, T. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337-350.   DOI   ScienceOn
20 Suh, N. and Blelloch, R. (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138, 1653-1661.   DOI   ScienceOn
21 Chen, H. and Chan, D. C. (2010) Physiological functions of mitochondrial fusion. Ann. N. Y. Acad. Sci. 1201, 21-25.   DOI   ScienceOn
22 Hales, K. G. and Fuller, M. T. (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121-129.   DOI   ScienceOn
23 Koshiba, T., Detmer, S. A., Kaiser, J. T., Chen, H., McCaffery, J. M. and Chan, D. C. (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858-862.   DOI   ScienceOn
24 Muliyil, S., Krishnakumar, P. and Narasimha M. (2011) Spatial, temporal and molecular hierarchies in the link between death, delamination and dorsal closure. Development 138, 3043-3054.   DOI   ScienceOn
25 Suen, D. F., Norris K. L. and Youle, R. J. (2008) Mitochondrial dynamics and apoptosis. Genes. Dev. 22, 1577-1590.   DOI   ScienceOn
26 Toyama, Y., Peralta, X. G., Wells, A. R., Kiehart, D. P. and Edwards, G. S. (2008) Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321, 1683-1686.   DOI   ScienceOn
27 Ma, L., Buchold, G. M., Greenbaum, M. P., Roy, A., Burns, K. H., Zhu, H., Han, D. Y., Harris, R. A., Coarfa, C., Gunaratne, P. H., Yan, W. and Matzuk, M. M. (2009) GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet. 5, e1000635.   DOI   ScienceOn
28 Langner, C. A., Birkenmeier, E. H., Ben-Zeev, O., Schotz, M. C., Sweet, H. O., Davisson, M. T. and Gordon, J. I. (1989) The fatty liver dystrophy (fld) mutation. A new mutant mouse with a developmental abnormality in triglyceride metabolism and associated tissue-specific defects in lipoprotein lipase and hepatic lipase activities. J. Biol. Chem. 264, 7994-8003.
29 Langner, C. A., Birkenmeier, E. H., Roth, K. A., Bronson, R. T. and Gordon, J. I. (1991) Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J. Biol. Chem. 266, 11955-11964.
30 Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E. and Shirihai, O. S. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446.   DOI   ScienceOn
31 Jenkins, G. M. and Frohman, M. A. (2005) Phospholipase D: a lipid centric review. Cell Mol. Life Sci. 62, 2305-2316.   DOI   ScienceOn
32 Huang, P. and Frohman, M. A. (2007) The potential for phospholipase D as a new therapeutic target. Expert Opin. Ther. Targets 11, 707-716.   DOI   ScienceOn
33 Brindley, D. N., Pilquil, C., Sariahmetoglu, M. and Reue, K. (2009) Phosphatidate degradation: phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. Biochim. Biophys. Acta. 1791, 956-961.   DOI   ScienceOn
34 Cazzolli, R., Shemon, A. N., Fang, M. Q. and Hughes, W. E. (2006) Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life 58, 457-461.   DOI   ScienceOn
35 Stuckey, J. A. and Dixon, J. E. (1999) Crystal structure of a phospholipase D family member. Nat. Struct. Biol. 6, 278-284.   DOI   ScienceOn
36 Colley, W. C., Sung, T. C., Roll, R., Jenco, J., Hammond, S. M., Altshuller, Y., Bar-Sagi, D., Morris, A. J. and Frohman, M. A. (1997), Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191-201.   DOI   ScienceOn
37 Hammond, S. M., Altshuller, Y. M., Sung, T. C., Rudge, S. A., Rose, K., Engebrecht, J., Morris, A. J. and Frohman, M. A. (1995) Human ADP-ribosylation factor-activated phosphatidylcholine- specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640-29643.   DOI
38 Uesugi, Y. and Hatanaka, T. (2009) Phospholipase D mechanism using Streptomyces PLD. Biochim. Biophys. Acta. 1791, 962-969.   DOI   ScienceOn
39 Choi, S. Y., Gonzalvez, F., Jenkins, G. M., Slomianny, C., Chretien, D., Arnoult, D., Petit, P. X. and Frohman, M. A. (2007) Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ. 14, 597-606.   DOI   ScienceOn
40 O'Donnell, K. A., Burns, K. H., and Boeke, J. D. (2008) A descent into the nuage: the maelstrom of transposon control. Dev. Cell 15, 179-181.   DOI   ScienceOn
41 Lim, A. K. and Kai, T. (2007) Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 104, 6714-6719.   DOI   ScienceOn
42 Carmell, M. A., Girard, A., van de Kant, H. J., Bourc'his, D., Bestor, T. H., de Rooij, D. G. and Hannon, G. J. (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell. 12, 503-514.   DOI   ScienceOn
43 Chuma, S., Hosokawa, M., Kitamura, K., Kasai, S., Fujioka, M., Hiyoshi, M., Takamune, K., Noce, T. and Nakatsuji, N. (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc. Natl. Acad. Sci. U.S.A. 103, 15894-15899.   DOI   ScienceOn
44 Frost, R. J., Hamra, F. K., Richardson, J. A., Qi, X., Bassel-Duby, R. and Olson, E. N. (2010) MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc. Natl. Acad. Sci. U.S.A. 107, 11847-11852.   DOI   ScienceOn
45 Aravin, A. A., van der Heijden, G. W., Castaneda, J., Vagin, V. V., Hannon, G. J. and Bortvin, A. (2009) Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet. 5, p.e1000764.   DOI   ScienceOn
46 Shoji, M., Tanaka, T., Hosokawa, M., Reuter, M., Stark, A., Kato, Y., Kondoh, G., Okawa, K., Chujo, T., Suzuki, T., Hata, K., Martin, S. L., Noce, T., Kuramochi-Miyagawa, S., Nakano, T., Sasaki, H., Pillai, R. S., Nakatsuji, N. and Chuma, S. (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell 17, 775-787.   DOI   ScienceOn
47 Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Takamatsu, K., Chuma, S., Kojima-Kita, K., Shiromoto, Y., Asada, N., Toyoda, A., Fujiyama, A., Totoki, Y., Shibata, T., Kimura, T., Nakatsuji, N., Noce, T., Sasaki, H. and Nakano, T. (2010) MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 24, 887-892.   DOI   ScienceOn
48 Braschi, E. and McBride, H. M. (2010) Mitochondria and the culture of the Borg: understanding the integration of mitochondrial function within the reticulum, the cell, and the organism. Bioessays 32, 958-966.   DOI   ScienceOn
49 Frohman, M. A. (2010) Mitochondria as integrators of signal transduction and energy production in cardiac physiology and disease. J. Mol. Med. 88, 967-970.   DOI   ScienceOn
50 Chan, D. C. (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.   DOI   ScienceOn
51 Aravin, A. A. and Chan D. C. (2011) piRNAs meet mitochondria. Dev. Cell 20, 287-288.   DOI   ScienceOn
52 Liesa, M., Palacin, M. and Zorzano, A. (2009) Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89, 799-845.   DOI   ScienceOn
53 Choi, S. Y., Huang, P., Jenkins, G. M., Chan, D. C., Schiller, J. and Frohman, M. A. (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell. Biol. 8, 1255-1262.   DOI   ScienceOn
54 Huang, H. and Frohman, M. A. (2009) Lipid signaling on the mitochondrial surface. Biochim. Biophys. Acta 1791, 839-844.   DOI   ScienceOn
55 Huang, H., Gao, Q., Peng, X., Choi, S. Y., Sarma, K., Ren, H., Morris, A. J. and Frohman, M. A. (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376-387.   DOI   ScienceOn
56 Watanabe, T., Chuma, S., Yamamoto, Y., Kuramochi- Miyagawa, S., Totoki, Y., Toyoda, A., Hoki, Y., Fujiyama, A., Shibata, T., Sado, T., Noce, T., Nakano, T., Nakatsuji, N., Lin, H. and Sasaki, H. (2011) MitoPLD Is a Mitochondrial Protein Essential for Nuage Formation and piRNA Biogenesis in the Mouse Germline. Developmental Cell 20, 364-375.   DOI   ScienceOn
57 Pane, A., Wehr, K. and Schupbach, T. (2007) Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell 12, 851-862.   DOI   ScienceOn
58 Siomi, M. C., Sato, K., Pezic, D. and Aravin, A. A. (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell. Biol. 12, 246-258.   DOI   ScienceOn