Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.8.024

Cyclosporine A and bromocriptine attenuate cell death mediated by intracellular calcium mobilization  

Kim, In-Ki (Asan Institute for Life Science, Asan Medical Center)
Park, So-Jung (Asan Institute for Life Science, Asan Medical Center)
Park, Jhang-Ho (Asan Institute for Life Science, Asan Medical Center)
Lee, Seung-Ho (Major of Nano-Bioengineering, University of Incheon)
Hong, Sung-Eun (Sanford-Burnham Medical Research Institute)
Reed, John C. (Sanford-Burnham Medical Research Institute)
Publication Information
BMB Reports / v.45, no.8, 2012 , pp. 482-487 More about this Journal
Abstract
To identify the novel inhibitors of endoplasmic reticulum stress-induced cell death, we performed a high throughput assay with a chemical library containing a total of 3,280 bioactive small molecules. Cyclosporine A and bromocriptine were identified as potent inhibitors of thapsigargiin-induced cell death (cut-off at $4{\sigma}$ standard score). However, U74389G, the potent inhibitor of lipid peroxidation had lower activity in inhibiting cell death. The inhibition effect of cyclosporine A and bromocriptine was specific for only thapsigargin-induced cell death. The mechanism of inhibition by these compounds was identified as modification of the expression of glucose regulated protein-78 (GRP-78/Bip) and inhibition of phosphorylation of p38 mitogen activated protein kinase (MAPK). However, these compounds did not inhibit the same events triggered by tunicamycin, which was in agreement with the cell survival data. We suggest that the induction of protective unfolded protein response by these compounds confers resistance to cell death. In summary, we identified compounds that may provide insights on cell death mechanisms stimulated by ER stress.
Keywords
Bromocriptine; Calcium mobilization; Cyclosporine A; Endoplasmic reticulum stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Reed, J. C. and Kroemer, G. (2000) Mechanisms of mitochondrial membrane permeabilization. Cell Death Differ. 7, 1145.   DOI
2 Yin, D., Tamaki, N., Kokunai, T., Yasuo, K. and Yonezawa, K. (1999) Bromocriptine-induced apoptosis in pituitary adenoma cells: relationship to p53 and bcl-2 expression. J. Clin. Neurosci. 6, 326-331.   DOI   ScienceOn
3 Sambaziotis, D., Kapranos, N. and Kontogeorgos, G. (2003) Correlation of bcl-2 and bax with apoptosis in human pituitary adenomas. Pituitary 6, 127-133.   DOI   ScienceOn
4 Muralikrishnan, D. and Mohanakumar, K. P. (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. The FASEB Journal: Official Publication of the FASEB J. 12, 905-912.
5 Lim, J. H., Kim, K. M., Kim, S. W., Hwang, O. and Choi, H. J. (2008) Bromocriptine activates NQO1 via Nrf2- PI3K/Akt signaling: novel cytoprotective mechanism against oxidative damage. Pharmacol. Res. 57, 325-331.   DOI   ScienceOn
6 Lim, J. H., Kim, S. S., Boo, D. H., No, H., Kang, B. Y., Kim, E. M., Hwang, O. and Choi, H. J. (2009) Protective effect of bromocriptine against BH4-induced Cath. A cell death involving up-regulation of antioxidant enzymes. Neurosci. Lett. 451, 185-189.   DOI   ScienceOn
7 Boyce, M. (2005) A selective inhibitor of eIF2[alpha] dephosphorylation protects cells from ER stress. Science 307, 935-939.   DOI   ScienceOn
8 Zhang, J. H., Chung, T. D. and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67-73.   DOI   ScienceOn
9 Kim, I., Shu, C. W., Xu, W., Shiau, C. W., Grant, D., Vasile, S., Cosford, N. D. and Reed, J. C. (2009) Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J. Biol. Chem. 284, 1593-1603.   DOI
10 Ravanan, P., Sano, R., Talwar, P., Ogasawara, S., Matsuzawa, S., Cuddy, M., Singh, S. K., Rao, G. S., Kondaiah, P. and Reed, J. C. (2011) Synthetic triterpenoid cyano enone of methyl boswellate activates intrinsic, extrinsic, and endoplasmic reticulum stress cell death pathways in tumor cell lines. Mol. Cancer Ther. 10, 1635-1643.   DOI
11 Nagai, H., Noguchi, T., Takeda, K. and Ichijo, H. (2007) Pathophysiological roles of ASK1-MAP kinase signaling pathways. BMB Rep. 40, 1-6.   과학기술학회마을   DOI
12 Rogers, T. B., Inesi, G., Wade, R. and Lederer, W. J. (1995) Use of thapsigargin to study $Ca^{2+}$ homeostasis in cardiac cells. Biosci. Rep. 15, 341-349.   DOI   ScienceOn
13 Sekine, Y., Takeda, K. and Ichijo, H. (2006) The ASK1- MAP kinase signaling in ER stress and neurodegenerative diseases. Curr. Mol. Med. 6, 87-97.   DOI   ScienceOn
14 Luo, S., Baumeister, P., Yang, S., Abcouwer, S. F. and Lee, A. S. (2003) Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J. Biol. Chem. 278, 37375-37385.   DOI   ScienceOn
15 Ron, D. and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529.   DOI   ScienceOn
16 Pizzo, P. and Pozzan, T. (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends. Cell Biol. 17, 511-517.   DOI   ScienceOn
17 Ma, Y. and Hendershot, L. M. (2004) ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat. 28, 51-65.   DOI   ScienceOn
18 Kim, I., Xu, W. and Reed, J. C. (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 7, 1013-1030.   DOI   ScienceOn
19 Malhotra, J. D. and Kaufman, R. J. (2007) The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716-731.   DOI   ScienceOn
20 Frand, A. R., Cuozzo, J. W. and Kaiser, C. A. (2000) Pathways for protein disulphide bond formation. Trends Cell Biol. 10, 203-210.   DOI   ScienceOn
21 Harding, H. P. (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153-1163.   DOI   ScienceOn
22 Yoshida, H. (2007) ER stress and diseases. FEBS J. 274, 630-658.   DOI   ScienceOn
23 Zhong, L. T., Sarafian, T., Kane, D. J., Charles, A. C., Mah, S. P., Edwards, R. H. and Bredesen, D. E. (1993) bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. U.S.A. 90, 4533-4537.   DOI   ScienceOn
24 Haas, S. J. and Wree, A. (2002) Dopaminergic differentiation of the Nurr1-expressing immortalized mesencephalic cell line CSM14.1 in vitro. J. Anat. 201, 61-69.   DOI   ScienceOn
25 Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes. Dev. 13, 1211-1233.   DOI   ScienceOn
26 Baumeister, P., Luo, S., Skarnes, W. C., Sui, G., Seto, E., Shi, Y. and Lee, A. S. (2005) Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol. Cell Biol. 25, 4529-4540.   DOI   ScienceOn
27 Borel, J. F. (2002) History of the discovery of cyclosporin and of its early pharmacological development. Wien. Klin. Wochenschr 114, 433-437.
28 Wang, H. G., Pathan, N., Ethell, I. M., Krajewski, S., Yamaguchi, Y., Shibasaki, F., McKeon, F., Bobo, T., Franke, T. F. and Reed, J. C. (1999) $Ca^{2+}$-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339-343.   DOI   ScienceOn