• Title/Summary/Keyword: linear time-varying system

Search Result 302, Processing Time 0.038 seconds

Synchronization of Linear Time-Varying Multi-Agent Systems with Heterogeneous Time-Varying Disturbances Using Integral Controller (적분 제어기를 이용한 이종 시변 외란을 갖는 선형 시변 다 개체 시스템의 동기화)

  • Kim, Jae-Yong;Yang, Jong-Wook;Shim, Hyung-Bo;Kim, Jung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.622-626
    • /
    • 2012
  • This paper presents synchronization of LTV (Linear Time-Varying) MAS (Multi-Agent Systems) with heterogeneous time-varying disturbances under a fixed, connected, and undirected communication network. All the agents can collect only relative state information from their neighborhoods. To achieve synchronization of the MAS, an integral control scheme is proposed based on relative state information between agents.

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

The Interpreter for the Bounded of the Uncertainty to transfer a Class of Time-varying Linear System with the uncertainty to the Time-invarying Linear System (불확실성을 갖는 선형 시변 시스템의 선형 시불변 시스템 변환을 위한 불확실성 유계 해석)

  • Cho, Do-Hyeoun;Lee, Jong-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • In this paper, we consider the input-state(I/S) transformation for the time-varying linear system with the uncertainty because of to determine the bounded range of the uncertainty. And we get the time-invarying linear system after the I/S transformation. We present the necessary sufficient condition for the I/S transformation. The transformed system represent the system with the multiple integral. We verify the proposal algorithm via the example and examine.

Stability Condition for Discrete Interval Time-varying System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • In this paper, the new stability condition of linear discrete interval time-varying systems with time-varying delay time is proposed. The considered system has interval time-varying system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. The restricted stability issue on the interval time-invariant system is expanded to interval time-varying system and a powerful stability condition which is more comprehensive than the previous is proposed. As a results, it is possible to avoid the introduction of complex linear matrix inequality (LMI) or upper solution bound of Lyapunov equation in the derivation of sufficient condition. Also, it is shown that the proposed result can include the many existing stability conditions in the previous literatures. A numerical example in the pe revious works is modified to more general interval system and shows the expandability and effectiveness of the new stability condition.

Adaptive control of time varying system (시변시스템의 적응제어에 관한 연구)

  • 곽유식;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.264-267
    • /
    • 1988
  • One of the major reasons of Adaptive Control is to control time varying systems. In this paper new adaptive algorithms are suggested for a class of linear time varying systems that satisfy certain assumptions. These algorithms consist of three modules, modeling, parameter estimation and control. The key feature of this paper is that power series of time varying parameters are used for estimation.

  • PDF

Mixed $H^2/H^{\infty}$ Filter Design for Linear Parameter Varying System (선형 파라마터 변이 시스템에 대한 혼합 $H^2/H^{\infty}$ 필터 설계)

  • 이갑래;윤한오
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.73-79
    • /
    • 1997
  • This paepr is concerned with the design of linear parameter varying filter that ensures H$^{2}$/$H^{\infty}$ performance for a class of linear parameter varying(LPV) plants. The state space matrices of plant are assumed to be dependent affinely on a vector of time varying parameter, and each parameter is assumed to be measured in real time. Using the linear matrix inequalities(LMIs), we can solve the synthesis problem and the solution of LMIs is carried out off-line. The designed filter is parameter varying and automatically scheduled along parameter trajectories. Because the solution of LMIs is carried out off-line, computation time of filter gain is reduced. The validity of the proposed algorithm is verifed through computer simulation..

  • PDF

Observer-Based Mixed $H_2/H_{\infty}$ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach

  • Karimi, Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • This paper presents a convex optimization method for observer-based mixed $H_2/H_{\infty}$ control design of linear systems with time-varying state, input and output delays. Delay-dependent sufficient conditions for the design of a desired observer-based control are given in terms of linear matrix inequalities (LMIs). An observer-based controller which guarantees asymptotic stability and a mixed $H_2/H_{\infty}$ performance for the closed-loop system of the linear system with time-varying delays is then developed. A Lyapunov-Krasovskii method underlies the observer-based mixed $H_2/H_{\infty}$ control design. A numerical example with simulation results illustrates the effectiveness of the methodology.

Wavelet network approximation and coefficient learning of linear-time-varying system (시변 선형 시스템의 웨이브렛망 근사화와 가중치의 학습)

  • 이영석;김동옥;서보혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.728-731
    • /
    • 1997
  • This paper discusses approximation modelling of discrete-time linear time-varying system(LTVS). The wavelet transform is considered as a tool for representing and approximating a LTVS. The joint time-frequency properties of wave analysis are appropriate for describing the LTVS. Simulation results is included to illustrate the potential application of the technique.

  • PDF

Analysis of Time-Varying Linear System Using the New Integral Operational Matrix via Block Pulse Functions (블록펄스 함수의 새로운 적분연산 행렬을 이용한 선형 시변계의 해석)

  • Cho, Young-Ho;Shin, Seung-Kwon;Park, Jung-Ho;Lee, Han-Seok;Kim, Jae-Il;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.755-757
    • /
    • 1999
  • The operational properties of BPF(block-pulse functions) are much applied to the analysis of time-varying linear systems. The integral operational matrix of BPF converts the systems in the form of the differential equation into the algebraic problems. But the errors caused by using the integral operational matrix make it difficult that we exactly analyze time-varying linear systems. So, in this paper, to analyze time-varying linear systems we had used the recursive algorithm derived from the new integral operational matrix. And the usefulness of the proposed method is verified by the example.

  • PDF

Nonlinear Observers for Perspective Time-Varying Linear Systems

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.83.5-83
    • /
    • 2002
  • Perspective dynamical systems arise in machine vision, in which only perspective observation is available, and the essential problem is to estimate the state and /or unknown parameters for a moving rigid body based on the observed information. This paper proposes and studies a Luenberger-type observer for perspective tim e-varying linear systems. In particular, assuming a given perspective time-varying linear system to be Lyapunov stable and to satisfy some sort of observability condition, it is shown that the estimation error converges exponentially to zero. Finally, a simple numerical exam pie is presented to illustrate the result obtained.

  • PDF