• Title/Summary/Keyword: linear slip

Search Result 211, Processing Time 0.028 seconds

Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential (전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어)

  • Cha, Hyunsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

A piecewise linear transverse shear transfer model for bolted side-plated beams

  • Li, Ling-Zhi;Jiang, Chang-Jiu;Su, Ray Kai-Leung;Lo, Sai-Huen
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.443-453
    • /
    • 2017
  • The performance of bolted side-plated (BSP) beams is affected by the degree of transverse partial interaction, which is a result of the interfacial slip caused by transverse shear transfer between the bolted steel plates and the reinforced concrete beams. However, explicit formulae for the transverse shear transfer profile have yet to be derived. In this paper, a simplified piecewise linear shear transfer model was proposed based on force superposition principle and simplification of shear transfer profiles derived from a previous numerical study. The magnitude of shear transfer was determined by force equilibrium and displacement compatibility condition. A set of design formulae for BSP beams under several basic load cases was also derived. Then the model was verified by test results. A worked example was also provided to illustrate the application of the proposed design formulae. This paper sheds some light on the shear force transfer mechanism of anchor bolts in BSP beams, and offers a practical method to evaluate the influence of transverse partial interaction in strengthening design.

Missile Flight Condition for Slip-in Booster's Safe Separation (내삽형 부스터 안전 분리를 위한 비행 조건 연구)

  • Oh, Hyun-Shik;Lee, Ho-Il;Cho, Jin;Kim, Ik-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • A mathematical model of slip-in booster separation dynamics is described. A longitudinal 3-DOF(degree of freedom) 2-body dynamic model is developed to simulate the separation dynamics. Aerodynamic models of the missile and the exposed area of booster are built. And, gas generator pushing the booster out and internal channel pressure drop are modelled. To simulate the model, it is assumed that the missile can maintain the 1g level-fight condition during the separation. With this assumption, the interaction forces between missile and booster through the separation phases: phase 0: initial, phase 1: linear translation, and phase 2: free flight motion are defined. Using the simulation, missile flight conditions for slip-in booster`s safe separation, which can be represented by Mach vs. height envelope, are suggested.

Analysis of Friction-Induced Vibrations in a Ball Screw Driven Slide on Skewed Guideway (경사안내면 상에서 이송되는 볼나사-슬라이드 이송계의 마찰기인 진동해석)

  • Choi, Young Hyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.88-98
    • /
    • 2014
  • A moving mass on a skewed linear guideway model to analyze the friction-induced stick-slip behavior of ball-screw-driven slides is proposed. To describe the friction force, a friction coefficient function is modelled as a third-order polynomial of the relative velocity between the slide mass and a guideway. A nonlinear differential equation of motion is derived and an approximate solution is obtained using a perturbation method for the amplitudes and base frequencies of both pure-slip and stick-slip oscillations. The results are presented with time responses, phase plots, and amplitude plots, which are compared adequately with those obtained by Runge Kutta 4th-order numerical integration, as long as the difference between the static and kinematic friction coefficients is small. However, errors in the results by the approximate solution increase and are not negligible if the difference between the friction coefficients exceeds approximately 40% of the static friction coefficient.

Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive

  • Tayeb, Bensatallah;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.133-153
    • /
    • 2020
  • In this paper, an improved theoretical interfacial stress and slip analysis is presented for simply supported composite steel-concrete beam bonded with an adhesive. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of elements has been noted in the results. It is observed that large shear is concentrated and slip at the edges of the composite steel-concrete. Comparing with some experimental results from references, analytical advantage of this improvement is possible to determine the normal and shear stress to estimate exact prediction of normal and shear stress interfacial along span between concrete and steel beam. The exact prediction of these stresses will be very important to make an accurate analysis of the mode of fracture. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite steel-concrete beam. This research is helpful for the understanding on mechanical behavior of the connection and design of such structures.

The Effect of Slip on the Convective Instability Characteristics of the Stagnation Point Flow Over a Rough Rotating Disk

  • Mukherjee, Dip;Sahoo, Bikash
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.831-843
    • /
    • 2021
  • In this paper we look at the three dimensional stagnation point flow problem over a rough rotating disk. We study the theoretical behaviour of the stagnation point flow, or forced flow, in the presence of a slip factor in which convective instability stationary modes appear. We make a numerical investigation of the effects of slip on the behaviour of the flow components of the stagnation point flow where the disk is rough. We provide, for the first time in the literature, a complete convective instability analysis and an energy analysis. Suitable similarity transformations are used to reduce the Navier-Stokes equations and the continuity equation into a system of highly non-linear coupled ordinary differential equations, and these are solved numerically subject to suitable boundary conditions using the bvp4c function of MATLAB. The convective instability analysis and the energy analysis are performed using the Chebyshev spectral method in order to obtain the neutral curves and the energy bars. We observe that the roughness of the disk has a destabilising effect on both Type-I and Type-II instability modes. The results obtained will be prominently treated as benchmarks for our future studies on stagnation flow.

Centralized Channel Allocation Schemes for Incomplete Medium Sharing Systems with General Channel Access Constraints (불완전매체공유 시스템을 위한 집중방식 채널할당기법)

  • Kim Dae-Woo;Lee Byoung-Seok;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.183-198
    • /
    • 2006
  • We define the incomplete medium sharing system as a multi-channel shared medium communication system where constraints are imposed to the set of channels that may be allocated to some transmitter-receiver node pairs. To derive a centralized MAC scheme of a incomplete medium sharing system, we address the problem of optimal channel allocation The optimal channel allocation problem is then translated into a max-flow problem in a multi-commodity flow graph, and it is shown that the optimal solution can then be obtained by solving a linear programming problem. In addition, two suboptimal channel allocation schemes are proposed to bring down the computational complexity to a practical/feasible level; (1) one is a modified iSLIP channel allocation scheme, (2) the other is sequential channel allocation scheme. From the results of a extensive set of numerical experiments, it is found that the suboptimal schemes evaluate channel utilization close to that of the optimal schemes while requiring much less amount of computation than the optimal scheme. In particular, the sequential channel allocation scheme is shown to achieve higher channel utilization with less computational complexity than . the modified iSLIP channel allocation scheme.

The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure (속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구)

  • Joe, Yong-Goo;Shin, Ki-Hong;Lee, Jung-Yun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

The structural safety assessment of a tie-down system on a tension leg platform during hurricane events

  • Yang, Chan K.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.263-283
    • /
    • 2011
  • The performance of a rig tie-down system on a TLP (Tension Leg Platform) is investigated for 10-year, 100-year, and 1000-year hurricane environments. The inertia loading on the derrick is obtained from the three-hour time histories of the platform motions and accelerations, and the dynamic wind forces as well as the time-dependent heel-induced gravitational forces are also applied. Then, the connection loads between the derrick and its substructure as well as the substructure and deck are obtained to assess the safety of the tie-down system. Both linear and nonlinear inertia loads on the derrick are included. The resultant external forces are subsequently used to calculate the loads on the tie-down clamps at every time step with the assumption of rigid derrick. The exact dynamic equations including nonlinear terms are used with all the linear and second-order wave forces considering that some dynamic contributions, such as rotational inertia, centripetal forces, and the nonlinear excitations, have not been accounted for in the conventional engineering practices. From the numerical simulations, it is seen that the contributions of the second-order sum-frequency (or springing) accelerations can be appreciable in certain hurricane conditions. Finally, the maximum reaction loads on the clamps are obtained and used to check the possibility of slip, shear, and tensile failure of the tie-down system for any given environment.