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Abstract. In this paper we look at the three dimensional stagnation point flow problem
over a rough rotating disk. We study the theoretical behaviour of the stagnation point flow,
or forced flow, in the presence of a slip factor in which convective instability stationary
modes appear. We make a numerical investigation of the effects of slip on the behaviour
of the flow components of the stagnation point flow where the disk is rough. We provide,
for the first time in the literature, a complete convective instability analysis and an en-
ergy analysis. Suitable similarity transformations are used to reduce the Navier-Stokes
equations and the continuity equation into a system of highly non-linear coupled ordinary
differential equations, and these are solved numerically subject to suitable boundary con-
ditions using the bvp4c function of MATLAB. The convective instability analysis and
the energy analysis are performed using the Chebyshev spectral method in order to obtain
the neutral curves and the energy bars. We observe that the roughness of the disk has a
destabilising effect on both Type-I and Type-II instability modes. The results obtained
will be prominently treated as benchmarks for our future studies on stagnation flow.

1. Introduction

The classical problem of steady laminar flow caused due to the rotation of an
infinite circular disk in a fluid at rest was first studied by Von Kármán [10], who
discovered that the Navier-Stokes equations possess an exact solution. Rotating
disk boundary-layer flow problems have been considered by engineers and scientists
for past few decades due to their wide practical applications in thermal power gen-
erating systems, rotating machinery, medical equipment, computer storage devices,
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gas turbine rotors, air cleaning machines, crystal growth processes and most impor-
tantly aerodynamic applications. The main concern of our present study is three
dimensional steady laminar stagnation point flow over a rotating disk, when the
disk is rough.

The stagnation point flow is one of the major problems which we encounter
with in many applications in the field of aerodynamics and in many flow fields in
engineering. The seminal book by Schlichting [15] gives extenssive background on
stagnation flow and its dynamics. Hiemenz [6] first formulated the problem, which
describes two-dimensional stagnation flow directed orthogonally towards an infinite
flat plate. He derived an exact solution to the Navier-Stokes equations. This prob-
lem later was extended to the case of axisymmetric flow by Homann [7]. The work
of Homann was then extended by Hannah [8], who introduced axisymmetric stagna-
tion flow against a rotating disk. Wang [17], in his study, stated that the stagnation
region is where highest pressure, the highest heat transfer, and the highest level of
mass deposition occur.

In most of the studies of fluid mechanics, the no-slip boundary condition is
applied, assuming that the fluid adheres to a solid boundary. But in some cases
like emulsions, suspensions, foams and polymer solutions [16], the no-slip condition
is not adequate. In the case of a slip condition, the Navier-Stokes equations and
the continuity equation can still be used together with a velocity slip factor in the
boundary condition. Miklavac̆ic̆ and Wang [12] first extended the Von Kármán
rotatng disk flow problem by considering that the lower disk admits partial slip due
to having a rough surface. Later, Sahoo [14] investigated the effect of partial slip,
viscous dissipation and joule heating on Von Kármán flow and heat transfer of an
electrically conducting non-Newtonian fluid. Recently, Lingwood and Garrett [11]
and Alveroglu et al. [1] introduced Coriolis force in the Navier-Stokes equations and
studied its effects on the convective instability characteristics of the BEK family
of flows rotating over a rough disk. They also established that anisotropic surface
roughness has a stabilising effect on the instabilities within BEK family of flows
(see Ref. [11, 1]).

In the above surveyed literature, the effect of slip on the convective instability
characteristics of the stagnation point flow over a rough rotating disk was never
considered. In this paper, we extend the work of Alveroglu et al. [1] to the case
of stagnation point flow or forced flow over a rough rotating disk by considering
a velocity slip factor in the boundary condition. A system of highly nonlinear
differential equations representing the motion of the fluid is solved in order to obtain
the velocity profiles. Also, a convective instability analysis and an energy analysis
are performed to get the neutral curves and the energy bars by using the Chebyshev
spectral method [18].

The structure of the paper is as follows. A brief description of the dynamics
of stagnation flow is described and the Navier-Stokes equations together with the
perturbation equations and the energy balance equation is formulated in Section
2. The results including the mean flow profiles, neutral curves and the energy
bars along with the numerical results are presented in Section 3. Finally, we give
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conclusions and motivations for our work.

2. Formulation of the Problem

2.1. The steady mean flow analysis

Stagnation point flow describes a flow of a viscous fluid in the immediate vicinity
of a solid surface in which the fluid approaching the surface divides into different
streams. Here, the stagnation point is the point of contact of the fluid with the
solid surface. Here, the fluid velocity is zero. The governing equations of motion of
the flow are derived from the generalized flow problem.

The dimensional Navier-Stokes equations and the continuity equation in cylin-
drical coordinate system (r∗, θ, z∗) are given by:

U∗

t∗ + U
∗ · ∇U∗ − V ∗2

r∗
= − 1

ρ∗
P ∗

r∗ + ν∗(∇2U∗ − U∗

r∗2
− 2

r∗2
V ∗

θ )(2.1)

V ∗

t∗ + U
∗ · ∇V ∗ +

U∗V ∗

r∗
= − 1

ρ∗r∗
P ∗

θ + ν∗(∇2V ∗ − V ∗

r∗2
+

2

r∗2
U∗

θ )(2.2)

W ∗

t∗ + U
∗ · ∇W ∗ = − 1

ρ∗
P ∗

z∗ + ν∗∇2W ∗(2.3)

U∗

r∗ +
U∗

r∗
+

1

r∗
V ∗

θ +W ∗

z∗ = 0(2.4)

Here U
∗

= (U∗, V ∗,W ∗) is the dimensional velocity field, ρ∗ is the fluid density,
P ∗ is the pressure, ν∗ is the kinematic viscosity and t∗ is time. Also, the flow is
assumed to be axisymmetric and steady so that ∂

∂θ
≡ 0 and ∂

∂t∗
≡ 0. The suitable

boundary conditions subject to slip condition are introduced as:

U∗ =
2− ξV ∗

ξV ∗

η
∂U∗

∂z
, V ∗ = Ωr +

2− ξV ∗

ξV ∗

η
∂V ∗

∂z
, W ∗ = 0

U∗ → Ue
∗, V ∗ → Ve

∗ as z → ∞
(2.5)

where ξV ∗ is the tangential momentum accommodation coefficient, which is deter-
mined empirically (see Ref. [13]) and depends on the fluid and surface finish, η is
the mean free path, and Ω is the rotation rate of the lower disk. For the case of a
frictionless potential flow it is found that:

Ue
∗ = ar∗, Ve

∗ = 0, We
∗ = −2az∗, P ∗ = −1

2
ρa2(r∗2 + 4z∗2) + P0(2.6)

where a is a constant and P0 is the stagnation pressure. Here, the stagnation point
occurs at the origin O.
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Let us consider the self-similarity of variables following Freidoonimehr et al. [4].
Taking the boundary-layer thickness z =

√
a
ν∗
z∗ as follows,

U∗ = ar∗U(z), V ∗ = ar∗V (z),

W ∗ =
√
aν∗W (z), P ∗ = −1

2
ρa2(r2 + P (z))

(2.7)

and assuming ∂
∂θ

≡ 0 and ∂
∂t∗

≡ 0, the Navier-Stokes equations and the continuity
equation (2.1) - (2.4) become:

d2U(z)

dz2
−W (z)

dU(z)

dz
− (U(z))2 + (V (z))2 + 1 = 0(2.8)

d2V (z)

dz2
−W (z)

dV (z)

dz
− 2U(z)V (z) = 0(2.9)

dW (z)

dz
+ 2U(z) = 0(2.10)

where the non-dimensional variables U, V,W are the radial, azimuthal and axial
velocity components respectively and P is the pressure in z. Now, the corresponding
boundary conditions given by (2.5) and (2.6) are expressed in terms of the self-
similarity variables in the following manner :

U(0) = γ̃U ′(0), V (0) = ω̃ + γ̃V ′(0), W (0) = 0

U(z) → 1, V (z) → 0 as z → ∞
(2.11)

where γ̃ = [(2−ξV ∗)η
√

a
ν∗
]/ξV ∗ is the slip factor and ω̃ = Ω∗

a
represents the strength

of rotation.

2.2. The perturbation equations

The perturbation equations are derived in order to perform a local stability
analysis of the flow in the immediate vicinity of the lower disk. In this case, this is
conducted in the boundary-layer adjacent to the stagnation point. The perturbation
equations are formulated using the dimensional Navier-Stokes equations and the
continuity equation (2.1) - (2.4), which are non-dimensionalised by the following
local similarity variables:

U(z) =
U∗

ar∗bΩ
∗
, V (z) =

V ∗

ar∗bΩ
∗
,W (z) =

W ∗

ar∗bΩ
∗
,

P (r, z) =
P ∗

a2ρ∗(r∗b )
2(Ω∗)2

, t =
t∗

l∗

ar∗
b
Ω∗

, r =
r∗b
l∗
,

(2.12)
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where rb
∗ is the local radial position of the disk and l∗ =

√
ν∗

aΩ∗
is the boundary

layer thickness. The non-dimensional Reynolds number is given by

Re =
ar∗bΩ

∗l∗

ν∗
= r(2.13)

In order to derive the perturbation equations, the perturbed quantities are taken
as:

ũ(x̃, t) =
r

Re
U(z) + u(x̃, t)

ṽ(x̃, t) =
r

Re
V (z) + v(x̃, t)

w̃(x̃, t) =
1

Re
W (z) + h(x̃, t)

p̃(x̃, t) =
1

Re2
P (z) + p(x̃, t),

(2.14)

where x̃ = (r, θ, z) and u, v, w, p are perturbed quantities.
Using the transformations (2.12) and (2.14) in the system of equations (2.1)

- (2.4), the resulting linearised perturbation equations are given by:

ut +
rU

Re
ur +

U

Re
u+

V

Re
uθ +

W

Re
uz −

2V

Re
v +

r

Re

dU

dz
w

= −pr +
1

Re
(urr +

1

r2
uθθ + uzz +

1

r
ur −

u

r2
− 2

r2
vθ)

(2.15)

vt +
rU

Re
vr +

U

Re
v +

V

Re
vθ +

W

Re
vz +

2V

Re
u+

r

Re

dV

dz
w

= −1

r
pθ +

1

Re
(vrr +

1

r2
vθθ + vzz +

1

r
vr −

v

r2
+

2

r2
uθ)

(2.16)

wt +
rU

Re
wr +

1

Re

dW

dz
w +

V

Re
wθ +

W

Re
wz

= −pz +
1

Re
(wrr +

1

r2
wθθ + wzz +

1

r
wr)

(2.17)

ur +
u

r
+

1

r
vθ + wz = 0(2.18)

In the above process of linearisation, the terms of O(Ro2

Re2
) are neglected. Also,

the second derivatives of the mean flow components i.e. rRo
Re

d2U
dz2 ,

rRo
Re

d2V
dz2 and

Ro
Re

d2W
dz2 are ignored (see Ref. [1]). Now, the perturbed quantities are expanded on

following Gustavasson [5], to carry out a normal mode analysis, as follows:

(u, v, w, p) = (û(z), v̂(z), ŵ(z), p̂(z))ei(αr+βθ−iωt).(2.19)
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Since, we are interested in the spatial analysis of the flow, it is assumed that
α = αr + iαi ∈ C is the radial wavenumber, β = βRe ∈ R is the azimuthal
wavenumber and ω ∈ R is the frequency. Furthermore, β is assumed to be O(1).

In order to separate the variables r, θ , z and t, a parallel-flow approximation
has been introduced. Therefore, the variable r has been replaced by Re

Ro
. Therefore,

the resulting separable linearised perturbation equations are

− 1

Re

d2û

dz2
+

1

Re
W

dû

dz
+ (iαU + iβV − iω +

α2

Re
+

β2

Re
+

1

Re
U)û

− 2

Re
V v̂ +

dU

dz
ŵ + iαp̂ = 0

(2.20)

− 1

Re

d2v̂

dz2
+

1

Re
W

dĝ

dz
+ (iαU + iβV − iω +

α2

Re
+

β2

Re
+

1

Re
U)v̂

+
2

Re
V û+

dV

dz
ŵ + iβp̂ = 0

(2.21)

−
1

Re

d2ŵ

dz2
+

1

Re
W

dŵ

dz
+ (iαU + iβV − iω +

α2

Re
+

β2

Re
+

1

Re

dW

dz
)ŵ

+p̂ = 0

(2.22)

(iα+
1

Re
)û+ iβv̂ +

dŵ

dz
= 0(2.23)

Here, the terms of order (Ro
Re

)2 and 1
Re2

are neglected. Following the analysis by
Cooper et al. [2], the perturbation quantities have to be zero near the surface of
the disk to satisfy the slip condition. Also, the continuity equation (2.23) implies
that dŵ

dz
(z) = 0 should be zero at the disk surface. Furthermore, the perturbation

quantities at the far end of the disk should also be zero to ensure that the distur-
bances are confined within the boundary-layer. Therefore, the relevant boundary
conditions are:

û(z) = v̂(z) = ŵ(z) =
dŵ

dz
(z) = p̂(z) = 0 at z = 0(2.24)

û(z) → 0, v̂(z) → 0, ŵ(z) → 0, p̂(z) → 0 as z → ∞.(2.25)

Since we are interested in finding the stationary modes, we will assume that the
frequency ω is 0 throughout our calculations. It is observed that our present analysis
is consistent with Cooper et al. [2].

2.3. The energy balance equation

A useful method for examining the stability of an initial perturbation is by cal-
culating its kinetic energy in the volume of the boundary-layer. Here, we perform
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a spatial stability analysis by calculating the kinetic energy equation of the per-
turbation equation, which was first introduced by Cooper and Carpenter [3]. The
linearised perturbation Eqs. (2.20) - (2.23) are multiplied by the perturbation quan-
tities û, v̂, ŵ and p̂ respectively. Then the obtained equations are added to derive
the kinetic energy equation in u,v,w and p, which is given by:

(
∂

∂t
+ U

∂

∂r
+

V

Re

∂

∂θ
+

W

Re

∂

∂z
)K =

−uw
dU

dz
− vw

dV

dz
−

1

Re
w2 dW

dz
+

U

Re
u2 +

U

Re
v2

−[
∂

∂r
(up) +

1

Re

∂

∂θ
(vp) +

∂

∂z
(wp) +

1

Re
up] + [

∂

∂xi

(ujσij)− σij

∂uj

∂xi

]

(2.26)

Here, σij =
1
Re

[ ∂ui

∂xj
+

∂uj

∂xi
] is the stress tensor and K = 1

2 (u
2 + v2 + w2).

Since it is assumed that the flow is steady and rotationally symmetric, the
derivatives with respect to t and θ are negleted. Now, Eqn. (2.26) is integrated
across the boundary-layer, which leads to the energy integral equation as follows:

∫
∞

0

[U
∂K

∂r
︸ ︷︷ ︸

a

+
∂(up)

∂r
︸ ︷︷ ︸

b

− ∂

∂r
(uσ11 + vσ12 + wσ13)

︸ ︷︷ ︸

c

]dz =

∫
∞

0

[(−uw
dU

dz
) + (−vw

dV

dz
) + (−w2

1

Re

dW

dz
)

︸ ︷︷ ︸

I

]−
∫

∞

0

(σij

∂uj

∂xi
︸ ︷︷ ︸

II

)

−
∫

∞

0

(
1

Re
up)dz + (wp)W

︸ ︷︷ ︸

III

+[uσ31 + vσ32 + wσ33]W
︸ ︷︷ ︸

IV

−
∫

∞

0

1

Re

∂K

∂z
+

∫
∞

0

1

Re
u2Udz +

∫
∞

0

1

Re
v2Udz

︸ ︷︷ ︸

V

(2.27)

Overbars denote a period-averaged quantity such that fg = fg∗ + f∗g, where ∗
indicates a complex conjugate and W in the subscript denotes quantities calculated
at the wall. Now the energy balance equation (2.27) is normalised to obtain:

−2αi = (P1 + P2 + P3)
︸ ︷︷ ︸

I

+ D
︸︷︷︸

II

+(PW1 + PW2)
︸ ︷︷ ︸

III

+(S1 + S2 + S3)
︸ ︷︷ ︸

IV

+(G1 +G2 +G3)
︸ ︷︷ ︸

V

(2.28)

The quantities indicated in Equations (2.28) and (2.27) are as follows.
(a) term arising due to kinetic energy flow by the radial component,
(b) contributions from the work done by the perturbation pressure term,
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Figure 1: Flow component in the radial direction

(c) terms arising from the work done by the viscous stress quantity in the interior
of boundary-layer,
(I) the Reynolds stress energy production terms, Pi’s,
(II) the viscous dissipation energy removal term, D,
(III) contributions from the work done by the pressure terms, PWi’s,
(IV) contributions from the work done on the wall by the viscous stresses, Si’s,
(V) terms arising due to the streamline curvature effects and the three dimensional
flow, Gi’s.
The terms PW2, S1, S2 and S3 are identically equal to zero due to the boundary
conditions (2.24) - (2.25).

3. Results and Discussions

3.1. The mean flow velocity profiles

The highly nonlinear and coupled similarity Eqs. (2.8) - (2.10) have been solved
subject to the boundary conditions (2.11) taking ω̃ = 1. The velocity profiles for
different values of the slip parameter γ̃ are computed by using the bpv4c function in
MATLAB [9]. The following figures represent the velocity profiles of the stagnation
point flow in the immediate vicinity of the wall of the lower disk.

Fig. 1 demonstrates the effect of slip γ̃ on the radial component of the flow
for a specified value of the rotation strength parameter ω̃. Now, if we look at the
figure it is observed that as the value of γ̃ increases the radial velocity of the flow
increases near the surface of the disk and gradually converges to its limiting value,
but the radial velocity boundary-layer thickness is reduced. The above observation
indicates the fact that less fluid is drawn and pushed away in the radial direction as
the slip gets stronger. A decrease in the angular velocity with an increasing value
of γ̃ near the surface of the disk is seen in Fig. 2. In this case also, the angular
velocity boundary-layer thickness declines as the slip factor is increased. Fig. 3
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Figure 2: Flow component in the angular direction
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Figure 3: Flow component in the axial direction
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demonstrates the axial component of the flow. A decrease in the axial velocity and
reduction of the boundary-layer thickness occurs increasing γ̃. This is because as
the slip gets stronger the fluid particles are pushed away in the radial direction and
the fluid particles are attracted towards the negative axial direction. The Table 1
is given for future references.

γ̃ F ′(0) −G′(0)

0 1.5739 1.1010

0.1 1.3879 1.0836

0.2 1.2323 1.0274

Table 1: The numerical values of radial and tangential skin friction coefficient

F ′(0) and −G′(0) for different values of γ̃ at ω̃ = 1:

3.2. The neutral curves

A neutral curve encloses a region in the plane which represents an unstable
region for the boundary layers. The upper lobe of a neutral curve represents inviscid
Type-I mode whereas the lower lobe represents viscous Type-II mode. The main
aim for obtaining the neutral curves is to determine whether slip has a stabilising
or destabilising effect on the flow. The neutral curves are obtained by solving
Eqs. (2.20)- (2.23) subject to the boundary conditions Eqs. (2.24)- (2.25) using the
Chebyshev spectral method (see Ref. [18]) to compute the convective instability
characteristics in terms of the neutral curves. The neutral curves are presented in
the (Re, αr)-plane.

0 50 100 150 200 250 300 350 400 450 500

Re

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

r

=0

=0.1

=0.2

Figure 4: The neutral curves of stagnation point flow in (Re, αr)-plane

Fig. 4 demonstrates neutral curves in (Re, αr)-plane. Observe that the area of
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the unstable region enclosed by the curves increases with the slip factor γ̃ for ω̃ = 1.
This indicates the fact that roughness of the disk has a globally destabilising effect
on the stationary Type-I and Type-II modes. The following table (Table 2) shows
the critical values of Re.

γ̃ Re

0 57.71

0.1 43.76

0.2 18.04

Table 2: The critical values of Reynolds number Re for the onset of the

convective instability for different values of γ̃ at ω̃ = 1:

3.3. The energy bars

The energy bars indicate the kinetic energy changes in the flow due to the
induced perturbation in the system. The energy bars have been obtained by solving
the corresponding energy integral equation of the perturbation equations. Here,
the positive terms signify the energy production whereas negative terms remove
energy from the system. An increasing energy change indicates a destabilisation
effect whereas decreasing energy change indicates a stabilisation effect. In order to
validate the result discussed in Subsection 3.2, an energy analysis has been done by
solving the energy integral Equation. (2.28). In Fig. 5 it is seen that with increasing
slip factor γ̃, the total kinetic energy TE of the rotating disk flow increases, i.e.,
the system shows a destabilising effect with increasing γ̃. This validates the result
obtained in the previous subsection. This method of validation can be applied to
any other rotating disk flow problems.

4. Conclusions

For the first time in the literature, the effect of slip on the convective instabil-
ity characteristics of the stagnation flow has been considered. Suitable similarity
transformations were used to reduce the Navier-Stokes equations and the continuity
equation into a system of highly nonlinear coupled ordinary differential equations,
and these solved numerically subject to suitable boundary conditions in order to get
the velocity profiles. From the obtained results it was observed that with increas-
ing values of γ̃ the radial velocity increases whereas the angular and axial velocity
decreases. But the boundary-layer thickness of each velocity components decreased
as the value of γ̃ was increased.

A convective instability analysis and an energy analysis were conducted using
the Chebyshev spectral method in order to solve the perturbation equations and
the energy balance equation, and to get the neutral curves and the energy bars
respectively. A globally destabilising effect on the instability modes (both Type-I
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Figure 5: The energy bars indicating the kinetic energy change in the flow

at Re = Recritical

and Type-II) was observed with increasing slip factors i.e. as the value of γ̃ increased
the instability of the flow began to increase. The results obtained in this paper will
be treated as benchmarks in our future studies on stagnation flow.
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