• 제목/요약/키워드: linear prediction

검색결과 1,983건 처리시간 0.03초

개방형 CNC를 갖는 공작기계에 실장한 열변형량 예측 시스템 (Prediction System of Thermal Errors Implemented on Machine Tools with Open Architecture Controller)

  • 김선호;고태조;안중환
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.52-59
    • /
    • 2008
  • The accuracy of the machine tools is degraded because of thermal error of structure due to thermal variation. To improve the accuracy of a machine tools, measurement and prediction of thermal error is very important. The main part of thermal source is spindle due to high speed with friction. The thermal error of spindle is very important because it is over 10% in total thermals errors. In this paper, the suitable thermal error prediction technology for machine tools with open architecture controller is developed and implemented to machine tools. Two thermal error prediction technologies, neural network and multi-linear regression, are investigated in several methods. The multi-linear regression method is more effective for implementation to CNC. The developed thermal error prediction technology is implemented on the internal function of CNC.

DIVERGENT SELECTION FOR POSTWEANING FEED CONVERSION IN ANGUS BEEF CATTLE V. PREDICTION OF FEED CONVERSION USING WEIGHTS AND LINEAR BODY MEASUREMENTS

  • Park, N.H.;Bishop, M.D.;Davis, M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제7권3호
    • /
    • pp.441-448
    • /
    • 1994
  • Postweaning performance data were obtained on 187 group fed purebred Angus calves from 12 selected sires (six high and six low feed conversion sires) in 1985 and 1986. The objective of this portion of the study was to develop prediction equations for feed conversion from a stepwise regression analysis. Variables measured were on-test weight (ONTSTWT), on-test age (ONTSTAG), five weights by 28-d periods, seven linear body measurements: heart girth (HG), hip height (HH), head width (HDW), head length (HDL), muzzle circumference (MC), length between hooks and pins (HOPIN) and length between shoulder and hooks (SHHO), and backfat thickness (BF). Stepwise regressions for maintenance adjusted feed conversion (ADJFC) and unadjusted feed conversion (UNADFC) over the first 140 d of the test, and total feed conversion (FC) until progeny reached 8.89 mm of back fat were obtained separately by conversion groups and sexes and for combined feed conversion groups and sexes. In general, weights were more important than linear body measurements in prediction of feed utilization. To some extent this was expected as weight is related directly to gain which is a component of feed conversion. Weight at 112 d was the most important variable in prediction of feed conversion when data from both feed conversion groups and sexes were combined. Weights at 84 and 140 d were important variables in prediction of UNADFC and FC, respectively, of bulls. ONTSTWT and weight at 140 d had the highest standardized partial regression coefficients for UNADFC and ADJFC, respectively, of heifers. Results indicated that linear measurements, such as MC, HDL and HOPIN, are useful in prediction of feed conversion when feed in takes are unavailable.

다수의 광대역 신호의 입사각 추정을 위한 이차원의 정응선형예측 알고리즘 (Adaptive Two Dimensional Linear Prediction Algorithm For Estimating Incident Angles of Multiple Broadbamd Signals.)

  • 김태원
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1987년도 학술발표회 논문집
    • /
    • pp.61-65
    • /
    • 1987
  • An algorithm for estimating incident angles of multiple broaband signals is proposed. The method adopts semicausal model for two dimensional linear prediction filter coefficients such that the arithmatic averag of the mean squared values of the forward and reverse prediction arrors is minimized. Preliminary results demonstrating the performance of the proposed method are presented. Simulation results indicate that the performance depends on signal-to-noise ratio and prediction order in spatial demension.

  • PDF

부실기업예측모형의 판별력 비교 (A Comparison of the Discrimination of Business Failure Prediction Models)

  • 최태성;김형기;김성호
    • 한국경영과학회지
    • /
    • 제27권2호
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we compares the business failure prediction accuracy among Linear Programming Discriminant Analysis(LPDA) model, Multivariate Discriminant Analysis (MDA) model and logit analysis model. The Data for 417 companies analyzed were gathered from KIS-FAS Published by Korea Information Service in 1999. The result of comparison for four time horizons shows that LPDA Is advantageous in prediction accuracy over the other two models when over all tilt ratio and business failure accuracy are considered simultaneously.

다중선형회귀법을 활용한 예민화와 환경변수에 따른 AL-6XN강의 공식특성 예측 (Prediction of Pitting Corrosion Characteristics of AL-6XN Steel with Sensitization and Environmental Variables Using Multiple Linear Regression Method)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.302-309
    • /
    • 2020
  • This study aimed to predict the pitting corrosion characteristics of AL-6XN super-austenitic steel using multiple linear regression. The variables used in the model are degree of sensitization, temperature, and pH. Experiments were designed and cyclic polarization curve tests were conducted accordingly. The data obtained from the cyclic polarization curve tests were used as training data for the multiple linear regression model. The significance of each factor in the response (critical pitting potential, repassivation potential) was analyzed. The multiple linear regression model was validated using experimental conditions that were not included in the training data. As a result, the degree of sensitization showed a greater effect than the other variables. Multiple linear regression showed poor performance for prediction of repassivation potential. On the other hand, the model showed a considerable degree of predictive performance for critical pitting potential. The coefficient of determination (R2) was 0.7745. The possibility for pitting potential prediction was confirmed using multiple linear regression.

낮은 계산 복잡도를 갖는 Linear Prediction 기반의 SNR 추정 기법 (LP-Based SNR Estimation with Low Computation Complexity)

  • 김선애;조병각;백광훈;유흥균
    • 한국전자파학회논문지
    • /
    • 제20권12호
    • /
    • pp.1287-1296
    • /
    • 2009
  • 채널의 상태가 시간에 따라 수시로 변하는 전송 환경에서 수신된 신호에 대한 잡음 비를 추정하는 것이 중요하다. 대부분의 SNR 추정기는 MF(Matched Filter) 후 수신된 샘플로 추정이 이루어진다. 하지만 이런 기법들은 무선 통신에서 채널의 상태에 민감한 특성을 갖는다. 하지만 수신기의 front-end에서 모아진 데이터들을 이용하는 선형 예측(LP: Linear Prediction) 기법을 기반으로 하는 신호 대 잡음 비 추정 알고리즘은 이에 비해 안정된 성능을 보인다. 본 논문에서는 LP 기반의 SNR 추정기를 소개하고, 기존의 LP 기법 기반으로 하는 SNR 추정 알고리즘의 계산 복잡도를 줄이기 위한 새로운 기법을 제안한다. 본 논문에서 제안하는 알고리즘은 Linear Prediction 오차를 구하는 과정에서 순방향 오차와 그 conjugate 값을 이용하여 SNR 추정 과정을 보다 간단하게 한다.

협력적 필터링 추천기법에서 이웃 수를 이용한 선호도 예측 정확도 향상 (Improving the prediction accuracy by using the number of neighbors in collaborative filtering)

  • 이희춘
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.505-514
    • /
    • 2009
  • 본 연구는 협력적 필터링 기법을 이용한 선호도 예측 과정에서 이웃의 수와 선호도 예측 정확도와의 관계를 분석하였다. 선호도 예측 과정에 선정된 이웃의 수를 4분위수로 4집단으로 구분하여 구분한 집단 간 선호도 예측 정확도에 차이가 나타남을 알 수 있었으며 각 집단의 예측 오차들의 평균들을 이용하여 선형의 보정함수를 제안하였다. 본 연구의 결과를 바탕으로 추천시스템에서 이웃 수를 이용한 보정함수를 이용하면 예측 정확도를 높일 수 있다.

  • PDF

Improved Single-Tone Frequency Estimation by Averaging and Weighted Linear Prediction

  • So, Hing Cheung;Liu, Hongqing
    • ETRI Journal
    • /
    • 제33권1호
    • /
    • pp.27-31
    • /
    • 2011
  • This paper addresses estimating the frequency of a cisoid in the presence of white Gaussian noise, which has numerous applications in communications, radar, sonar, and instrumentation and measurement. Due to the nonlinear nature of the frequency estimation problem, there is threshold effect, that is, large error estimates or outliers will occur at sufficiently low signal-to-noise ratio (SNR) conditions. Utilizing the ideas of averaging to increase SNR and weighted linear prediction, an optimal frequency estimator with smaller threshold SNR is developed. Computer simulations are included to compare its mean square error performance with that of the maximum likelihood (ML) estimator, improved weighted phase averager, generalized weighted linear predictor, and single weighted sample correlator as well as Cramer-Rao lower bound. In particular, with smaller computational requirement, the proposed estimator can achieve the same threshold and estimation performance of the ML method.

Linear Prediction Approach for Accurate Dual-Channel Sine-Wave Parameter Estimation in White Gaussian Noise

  • So, Hing-Cheung;Zhou, Zhenhua
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.641-644
    • /
    • 2012
  • The problem of sinusoidal parameter estimation at two channels with common frequency in white Gaussian noise is addressed. By making use of the linear prediction property, an iterative linear least squares (LLS) algorithm for accurate frequency estimation is devised. The remaining parameters are then determined according to the LLS fit with the use of the frequency estimate. It is proven that the variance of the frequency estimate achieves Cram$\acute{e}$r-Rao lower bound at sufficiently small noise conditions.

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.