Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.6.302

Prediction of Pitting Corrosion Characteristics of AL-6XN Steel with Sensitization and Environmental Variables Using Multiple Linear Regression Method  

Jung, Kwang-Hu (Mokpo branch, Korea institute of maritime and fisheries technology)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.19, no.6, 2020 , pp. 302-309 More about this Journal
Abstract
This study aimed to predict the pitting corrosion characteristics of AL-6XN super-austenitic steel using multiple linear regression. The variables used in the model are degree of sensitization, temperature, and pH. Experiments were designed and cyclic polarization curve tests were conducted accordingly. The data obtained from the cyclic polarization curve tests were used as training data for the multiple linear regression model. The significance of each factor in the response (critical pitting potential, repassivation potential) was analyzed. The multiple linear regression model was validated using experimental conditions that were not included in the training data. As a result, the degree of sensitization showed a greater effect than the other variables. Multiple linear regression showed poor performance for prediction of repassivation potential. On the other hand, the model showed a considerable degree of predictive performance for critical pitting potential. The coefficient of determination (R2) was 0.7745. The possibility for pitting potential prediction was confirmed using multiple linear regression.
Keywords
AL-6XN; Corrosion characteristics; Sensitization; Environmental variable; Multiple linear regression;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. S. Chou, N. T. Ngo, and W. K. Chong, Eng. Appl. Artif. Inte., 65, 471 (2017). https://doi.org/10.1016/j.engappai.2016.09.008   DOI
2 H. Khatak and B. Raj, Corrosion of austenitic stainless steels: mechanism, mitigation and monitoring, 1st ed., p.75-80, Woodhead publishing, (2002).
3 T. Hong and M. Nagumo, Corros. Sci., 39, 285-293 (1997). https://doi.org/10.1016/S0010-938X(96)00127-8   DOI
4 E. A. Abd El Meguid, N. A. Mahmoud, and S. S. Abd El Rehim, Mater. Chem. Phys., 63, 67 (2000). https://doi.org/10.1016/S0254-0584(99)00206-0   DOI
5 C. Alonso, M. Castellote, and C. Andrade, Electrochim. Acta., 47, 3469 (2002). https://doi.org/10.1016/S0013-4686(02)00283-9   DOI
6 A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. J. C. S. Matykina, Corros. Sci., 50, 1796 (2008). https://doi.org/10.1016/j.corsci.2008.04.005   DOI
7 H. S. Klapper, J. Goellner, A. Burkert, and A. Heyn, Corros. Sci., 75, 239 (2013). https://doi.org/10.1016/j.corsci.2013.06.005   DOI
8 Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, and X. Li, Appl. Surf. Sci., 349, 746 (2015). https://doi.org/10.1016/j.apsusc.2015.05.053   DOI
9 Y. S. Kim, Corros. Sci. Tech., 9, 20 (2010). https://www.j-cst.org/main/abstract_view.htm?scode=C&code=C00090100020&vol=9&no=1&type=aissue   DOI
10 B. Beverskog and I. Puigdomenech, Corros. Sci., 39, 43 (1997). https://doi.org/10.1016/S0010-938X(97)89244-X   DOI
11 K. T. Kim, S. B. Um, and S. Y. Kim, Corros. Sci. Tech., 16, 305 (2017). https://doi.org/10.14773/cst.2017.16.6.305   DOI
12 T. O. Kowang and C. S. Long, Appl. Mech. Mater., 789, 1201 (2015). https://doi.org/10.4028/www.scientific.net/AMM.789-790.1201   DOI
13 R. Baboian, Corrosion tests and standards: application and interpretation, 2nd ed., p. 502, ASTM International (1995).
14 A. A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, and F. Bolzoni, Corros. Sci. 159, 108160 (2019). https://doi.org/10.1016/j.corsci.2019.108160   DOI
15 J. W. Osborne, Pract. Assess. Res. Evaluation, 7, 2 (2000).
16 H. Ezuber, A. Alshater, S. O. Nisar, A. Gonsalvez, and S. Aslam, Surf. Eng. Appl. Elect., 54, 73 (2018). https://doi.org/10.3103/S1068375518010039   DOI