• Title/Summary/Keyword: linear matrix inequality

Search Result 483, Processing Time 0.024 seconds

Design of a reduced-order $H_{\infty}$ controller using an LMI method (LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Chung, Soon-Hyun;Cheon, Jong-Min;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.

Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론)

  • Kang Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Three-Axis Autopilot Design for a High Angle-Of-Attack Missile Using Mixed H2/H Control

  • Won, Dae-Yeon;Tahk, Min-Jea;Kim, Yoon-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.131-135
    • /
    • 2010
  • We report on the design of a three-axis missile autopilot using multi-objective control synthesis via linear matrix inequality techniques. This autopilot design guarantees $H_2/H_{\infty}$ performance criteria for a set of finite linear models. These models are linearized at different aerodynamic roll angle conditions over the flight envelope to capture uncertainties that occur in the high-angle-of-attack regime. Simulation results are presented for different aerodynamic roll angle variations and show that the performance of the controller is very satisfactory.

Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem (선형행렬부등식을 이용한 정적출력궤환 제어기 설계)

  • Kim Seogj-Joo;Kwon Soonman;Kim Chung-Kyung;Moon Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.

Simultaneous Stabilization Via Static Ouput Feedback Using an LMI Method (LMI를 이용한 정적출력궤환 동시안정화 제어기 설계)

  • Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man;Moon, Young-Hyun;Kim, Seog-Joo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.5
    • /
    • pp.226-228
    • /
    • 2006
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

Development of Continuous/Discrete Mixed $H_2$/H$\infty$ Filtering Design Algorithms for Time Delay Systems

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.163-168
    • /
    • 2000
  • The problems of mixed $H_2/H_{\infty}$ filtering design fer continuous and discrete time linear systems with time delay are investigated. The main purpose is to design a stable mixed $H_2/H_{\infty}$ filter which minimizes the H$_2$Performance measure satisfying a prescribed H$_{\infty}$ norm bound on the closed loop system in continuous-time case and discrete-time case, respectively. The sufficient conditions of existence of filter, the mixed $H_2/H_{\infty}$ filter design method, and the upper bound of performance measure are proposed by LMI(linear matrix inequality) techniques in terms of all finding variables. Also, we present optimization problems in order to get the optimal mixed $H_2/H_{\infty}$ filter in continuous and discrete time case, respectively.

  • PDF

Sliding Mode Observer for Uncertain Fuzzy System: An LMI Approach (LMI를 이용한 불확실한 퍼지 시스템의 슬라이딩 모드 관측기 설계)

  • Song Min-Guk;Ju Yeong-Hun;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.159-163
    • /
    • 2006
  • 본 논문에서는 비선형 시스템의 슬라이딩 모드 관측기 설계에 대해서 논의한다. 제어 대상인 비선형 시스템을 모델링 하는데 있어서 Takagi-Sugeno(T-S) 퍼지 모델 기법을 이용하였고, 이 때 발생할 수 있는 모델 불확실성과 외란에 대해 그것의 최대 최소 범위를 안다고 가정하였다. 제안된 시스템의 LMI (Linear Matrix Inequality)를 기반으로 한 슬라이딩 모드 관측기 설계 방법에서는 관측기와 시스템의 차이를 슬라이딩 표면으로 설정한다. 안정한 슬라이딩 표면을 갖는 슬라이딩 관측기의 존재 가능성을 선형 행렬 부등식의 형태로 표현한다. 슬라이딩 모드 관측기 이득은 LMI 존재 조건의 해를 이용하여 구한다.

  • PDF