• 제목/요약/키워드: linear matrix inequalities(LMI)

검색결과 142건 처리시간 0.027초

A Study on Intelligent Decentralized Active Suspension Control System with Descriptor LMI Design Method

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.198-203
    • /
    • 2008
  • An Intelligent optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory with representing by descriptor system form is presented. The validity of the linear matrix inequalities intelligent decentralized control system design with representing by descriptor system form in active suspension system through the numerical examples is also investigated.

Linear Matrix Inequalities(LMIs)를 이용한 강인한 LQR/LQG 제어기의 설계 (Design of robust LQR/LQG controllers by LMIs)

  • 유지환;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.988-991
    • /
    • 1996
  • The purpose of this thesis is to develop methods of designing robust LQR/LQG controllers for time-varying systems with real parametric uncertainties. Controller design that meet desired performance and robust specifications is one of the most important unsolved problems in control engineering. We propose a new framework to solve these problems using Linear Matrix Inequalities (LMls) which have gained much attention in recent years, for their computational tractability and usefulness in control engineering. In Robust LQR case, the formulation of LMI based problem is straightforward and we can say that the obtained solution is the global optimum because the transformed problem is convex. In Robust LQG case, the formulation is difficult because the objective function and constraint are all nonlinear, therefore these are not treatable directly by LMI. We propose a sequential solving method which consist of a block-diagonal approach and a full-block approach. Block-diagonal approach gives a conservative solution and it is used as a initial guess for a full-block approach. In full-block approach two LMIs are solved sequentially in iterative manner. Because this algorithm must be solved iteratively, the obtained solution may not be globally optimal.

  • PDF

비정합 불확실성을 갖는 선형 시스템을 위한 LMI 기반 슬라이딩 평면 설계법 (An LMI-Based Sliding Surface Design Method for Linear Systems with Mismatched Uncertainties)

  • 최한호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권9호
    • /
    • pp.409-413
    • /
    • 2006
  • In this paper, we propose a new sliding surface design method for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. And, we give an LMI parameterization of such linear sliding surfaces together with switched feedback control laws. Our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.

LMI 기법을 이용한 2자유도 표준모델에 대한 비결합 제어기의 H(sub)$\infty$ 설계 (H(sub)$\infty$ Design for Decoupling Controllers Based on the Two-Degree-of-Freedom Standard Model Using LMI Methods)

  • 강기원;이종성;박기헌
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.183-192
    • /
    • 2001
  • In this paper, the decoupling H(sub)$\infty$ controller which minimizes the maximum energy in the output signal is designed to reduce the coupling properties between the input/output variables which make it difficult to control a system efficiently. The state-space formulas corresponding to the existing transfer matrix formulas of the controller are derived for computational efficiency. And for a given decoupling $H_{\infty}$ problem, an efficient method are sought to find the controller coefficients through the LMI(Linear Matrix Inequalities) method by which the problem is formulated into a convex optimization problem.

  • PDF

An Orbit Robust Control Based on Linear Matrix Inequalities

  • Prieto, D.;Bona, B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.454-459
    • /
    • 2004
  • This paper considers the problem of satellite's orbit control and a solution based in Linear Matrix Inequalities (LMI) is proposed for the case of Low Earth Orbiters (LEO). In particular, the modelling procedure and the algorithm for control law synthesis are tested using as study case the European Gravity Field and Ocean Circulation Explorer satellite (GOCE), to be launched by the European Space Agency (ESA) in the year 2006. The scientific objective of this space mission is the recovering of the Earth gravity field with high accuracy (less than 10${\mu}m$/${\mu}m$) and spatial resolution (better than 100km). In order to meet these scientific requirements, the orbit control must guarantee stringent specifications in terms of environmental disturbances attenuation (atmospheric drag forces) even in presence of high levels of model uncertainty.

  • PDF

대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 정적 출력 궤환 제어기 설계 (An LMI-based Decentralized Sliding Mode Static Output Feedback Control Design Method for Large Scale Systems)

  • 최환호
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.381-384
    • /
    • 2008
  • In this paper, we consider the problem of designing decentralized sliding mode static output feedback control laws for a class of large scale systems with mismatched uncertainties. We derive a sufficient condition for the existence of a linear switching surface in terms of constrained linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given constrained LMI existence conditions. We also give an LMI-based algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

출력 궤환 슬라이딩 모드 제어기 설계를 위한 선형행렬부등식 접근법 (An LMI Approach to Output Feedback Sliding Mode Controller Design)

  • 최한호
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1298-1301
    • /
    • 2007
  • The problem of designing dynamic output feedback sliding mode controllers for uncertain multivariable linear systems is considered. Using linear matrix inequalities(LMIs), a feasibility condition for the design problem is derived. Explicit fomulas of the gain matrices of a full order output feedback sliding mode controller in terms of the solution matrices of the LMI condition is given. A simple LMI-based algorithm for designing output feedback sliding mode controllers is also given. Finally, numerical design examples are given to show the effectiveness of the proposed method.

대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 제어기 설계 (An LMI-based Decentralized Sliding Mode Control Design Method for Large Scale Systems)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.651-655
    • /
    • 2005
  • In this paper, we consider the problem of designing decentralized sliding mode control laws far a class of large scale systems with mismatched uncertainties. We derive a sufficient condition far the existence of a linear switching surface in terms of a linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given LMI existence conditions. We also give an algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

DISCRETE-TIME MIXED $H_2/H_{\infty}$ FILTER DESIGN USING THE LMI APPROACH

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.129-132
    • /
    • 1999
  • This paper deals with the optimal filtering problem constrained to input noise signal corrupting the measurement output for linear discrete-time systems. The transfer matrix H$_2$and/or H$_{\infty}$ norms are used as criteria in an estimation error sense. In this paper, the mixed $H_2/H_{\infty}$ filtering Problem in lineal discrete-time systems is solved using the LMI approach, yielding a compromise between the H$_2$and H$_{\infty}$ filter designs. This filter design problems we formulated in a convex optimization framework using linear matrix inequalities. A numerical example is presented.

  • PDF

선형 슬라이딩 평면의 개선된 존재 조건 (An Improved Existence Condition of Linear Sliding Surfaces)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.851-855
    • /
    • 2007
  • This paper deals with the problem of designing a linear sliding surface design for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. We show that our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.