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Abstract: This paper considers the problem of satellite’s orbit control and a solution based in Linear Matrix Inequalities

(LMI) is proposed for the case of Low Earth Orbiters (LEO). In particular, the modelling procedure and the algorithm for control

law synthesis are tested using as study case the European Gravity Field and Ocean Circulation Explorer satellite (GOCE), to be

launched by the European Space Agency (ESA) in the year 2006. The scientific objective of this space mission is the recovering

of the Earth gravity field with high accuracy (less than 10µm/s2) and spatial resolution (better than 100km). In order to meet

these scientific requirements, the orbit control must guarantee stringent specifications in terms of environmental disturbances

attenuation (atmospheric drag forces) even in presence of high levels of model uncertainty.
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1. Introduction and background
1.1. The orbit control problem in LEO

The main purpose of an orbit control system (OCS) is to

guarantee the tracking of a predefined orbit despite the ef-

fects of exogenous disturbances (such as gravitational pertur-

bations, atmospheric drag, solar radiation pressure), actua-

tors and measurement noise and uncertainty in the mathe-

matical model definition. This paper offers a general frame-

work for the formulation and solution of the OCS for the

most common type of spacecraft rounding the Earth: the

satellites launched into near circular orbits with altitudes

between 250km and 1500km. The most frequent use of

Low Earth Orbiters is in remote sensing missions, where the

higher spatial resolution at lower altitudes is used for devel-

oping complex measurements in a variety of spectral bands

associated with specific scientific and technological missions.

1.2. The GOCE mission

The European mission Gravity Field and Steady-State

Ocean Circulation Explorer(GOCE) is dedicated to the ex-

tremely high accurate measuring of the Earth’s gravity field

(less than 10µm/s2) and modelling the geoid (accuracy of

1 − 2cm) at a spatial resolution better than 100km [1].

The mission will be developed with the following main el-

ements: a single rigid octagonal spacecraft of approximately

5m long and 1m in diameter with fixed solar wings and

no moving parts (Fig. 2(a)), a 12-channel GPS receiver

Fig. 1. Objectives of the GOCE mission: global model of

the Earth’s gravity field and geoid (courtesy ESA)

(a) CAD view of spacecraft (b) Prototype of accelerometer

Fig. 2. Elements of the GOCE mission (courtesy ESA)

with geodetic quality (for implementing Precise Orbit De-

termination, POD), a laser retroreflector enabling tracking

by ground-based lasers and an ensemble of 3 pairs of three-

axial electrostatic accelerometers (gravity gradiometer), each

one containing a 320g proof mass electrostatically suspended

and mechanically isolate from the spacecraft’s main body

through a specially engineered ’cage’ (Fig. 2(b)). The spe-

cific role of the OCS for GOCE can be defined as an advanced

drag compensation system that keeps the six proof masses

in near ’free fall motion’ and maintains the average orbital

altitude at about 250km. To develop these tasks, the forces

that maintain each proof mass at the center of the cage are

measured and the deviation from the nominal position within

the allowed clearance band is used by the OCS for command-

ing the orbit propulsion subsystem (pair of Ion propulsion

thrusters), that compensates the non-gravitational distur-

bance forces. The GOCE is thus forced to chase the proof

mass, actively shielding it from the non-gravitational forces,

the largest of which is the atmospheric drag. The net effect

is that combining the differential accelerations, it is possible

to derive the gravity gradient components.

1.3. Main contributions and paper organization

In this paper is proposed an approach for the orbit model

definition based on spherical coordinates instead of the clas-
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sical cartesian framework [2], [3], [4]. This allows to deduce

a space state model (sections 2 and 3) characterized for an

explicit relation with some classical orbit parameters (semi-

major axis, eccentricity, epoch of passage from the perigee)

and hence, offers more flexibility and clearness for analyzing

the effects of any linear or non linear approximation. Also,

the formulation of the OCS into a robust control framework

[5], [6], allows to approximate the orbital dynamics through a

relatively low complexity model, that includes a mathemat-

ical description of the system’s uncertainty (section 4) as

well as a detail analysis of the exogenous disturbances (sec-

tion 5). The application of modern H∞ synthesis theories

for Singular Value (SV) shaping (section 6) offers optimal

results for tracking, disturbance rejection and robustness as-

pects (section 7) when compared to space-feedback methods

[3] or to frequency-weighted LQG (H2) synthesis [7]. In ad-

dition, the Linear Matrix Inequality approach offers a more

flexible frame for H∞ synthesis than state-space design tech-

niques [8] because its applicable in transfer functions (from

controls to controlled outputs and from disturbances to mea-

sured outputs) with invariant zeros on the imaginary axis (as

in the present case). Also, it requires only two main assump-

tions in the augmented model [8]: one, the pairs A, B2 and A,

C2 shall be stabilizable and detectable respectively (the min-

imum for plant stabilization by dynamic output feedback);

second, D22 shall be equal to zero (proper plant).

2. Reference frames
For establishing the mathematical model of LEO’s motion, it

is necessary to define a set of coordinate systems that allows

a correct and easy integration of all the phenomena involved:

2.1. Inertial reference frame (IRF)

For practical purposes, a geocentric coordinate system is a

suitable IRF due to the almost circular and unaccelerated

motion of the Earth around the sun (orbit period > 365

days) [9]. Based on this consideration, it is defined an IRF

with origin at the Earth’s Center of Mass (CoM); the Zj axis,

is the axis of Earth’s rotation that intersects the celestial

sphere at the north celestial pole; the Xj axis coincides with

the vernal equinox vector (at the epoch January 1, 2000); the

Yj axis completes the right-handed orthogonal coordinate

system.

2.2. Local Orbit Reference Frame (LORF)

It is a non-inertial reference frame used for describing the

drag forces that perturbate the LEO. The origin is placed in

the CoM of the spacecraft; the XL axis is parallel to the in-

stantaneous orbital velocity vector (v); the YL axis is parallel

to the instantaneous direction of the orbit angular momen-

tum (h = r × v); the ZL axis completes the right-handed

orthogonal coordinate system.

2.3. Natural Orbit Reference Frame (NORF)

It is a non-inertial reference frame, suitable for the deduction

of a space state model that describes the physical phenom-

ena in terms of orbit plane (nominal case) and out-of-plane

dimensions. The origin is placed in the Earth’s Center of

Mass; the XN axis points toward the perigee in the orbit

plane; the ZN axis is parallel to the instantaneous direction

of the orbit angular momentum (h = r × v); the YN axis

completes the right-handed orthogonal coordinate system.

2.4. Transformation between reference frames

The transformation from NORF to IRF is provided through

the following transformation matrix:⎡⎢⎣Xj

Yj

Zj

⎤⎥⎦=
[
Rz(−Ω)Rx(−i)Rz(−ω)

] ⎡⎢⎣XN

YN

ZN

⎤⎥⎦ (1)

where, RA(B) is a transformation matrix that represents a

rotation about an axis A by the angle B. Specifically in (1),

the ZN axis is first rotate clockwise by the argument of the

perigee (ω), aligning the original XN axis with the line of

nodes. Then, the X axis of this new coordinate system is

rotated clockwise by the inclination angle (i), aligning the

orbit plane with the Earth’s Equatorial plane. Finally, the

Z axis of this new coordinate system is rotated clockwise by

the right ascension of the ascending node (Ω). The transfor-

mation from LORF to IRF is provided through the following

rotation matrix:⎡⎢⎣Xj

Yj

Zj

⎤⎥⎦=
[

v
‖v‖

v×r
‖v×r‖

v×r×v
‖v×r×v|

] ⎡⎢⎣XL

YL

ZL

⎤⎥⎦ (2)

v and r are the instantaneous velocity and position vectors

respectively.

3. Linearized model
The dynamic model for LEO’s motion is deduced in terms

of spherical coordinates referenced to the NORF. The radius

vector r connects the Earth’s and LEO’s CoM. Its unitary

vector is represented by er . The true anomaly (θ) has as

unitary vector eθ and the declination in NORF (φ) has as

unitary vector eφ . From the above definitions, it can be

demonstrated that spherical and cartesian coordinates in the

NORF are related by the following expression:⎡⎢⎣er

eθ

eφ

⎤⎥⎦=

⎡⎢⎣ cos φ cos θ cos φ sin θ sin φ

− sin θ cos θ 0

− sin φ cos θ− sin θ sin θcos φ

⎤⎥⎦
⎡⎢⎣exN

ey N

ez N

⎤⎥⎦ (3)

Since the direction of the cartesian unit vectors is fixed, the

derivatives of the spherical unit vectors can be expressed as:⎡⎢⎣ėr

ėθ

ėφ

⎤⎥⎦=

⎡⎢⎣ 0 θ̇ cos φ φ̇

−θ̇ cos φ 0 θ̇ sin φ

−φ̇ −θ̇ sin φ 0

⎤⎥⎦
⎡⎢⎣er

eθ

eφ

⎤⎥⎦ (4)

Using (4), it can be deduced the linear velocity (ṙ) and ac-

celeration (r̈) vectors in spherical coordinates:

r = rer (5)

ṙ = ṙer + rėr = ṙer + (rθ̇ cos φ)eθ + φ̇eφ (6)

r̈ = r̈er + ṙėr + (ṙθ̇ cos φ + rθ̈ cos φ − rθ̇φ̇ sin φ)eθ +

rθ̇ cos φėθ + (ṙθ̇ + rφ̈)eφ + rφ̇ėφ

r̈ = (r̈ − rθ̇2 cos2 φ − rφ̇2)er +

(rθ̈ cos φ + 2ṙθ̇ cos φ − 2rθ̇φ̇ sin φ)eθ (7)

+(rφ̈ + 2ṙφ̇ + rθ̇2 sin φ cos φ)eφ
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Rearranging (7) in terms of the spherical acceleration com-

ponents and using the Newton’s gravitational law, it is ob-

tained the following system of equations for a non-perturbed

(Keplerian) orbit in spherical coordinates:

r̈ − rθ̇2 cos2 φ − rφ̇2 +
µ⊕
r2

= 0 (8)

rθ̈ cos φ + 2ṙθ̇ cos φ − 2rθ̇φ̇ sin φ = 0 (9)

rφ̈ + 2ṙφ̇ + rθ̇2 sin φ cos φ = 0 (10)

In order to deduce the complete dynamic description of the

system, the force model (8)-(10) is complemented with the

vector perturbation forces (di), the residual terms (zonal and

tesseral harmonics) of the gravitational model (gi), and the

vector of control variables (ui) to be applied by the propul-

sion subsystem:

r̈ − rθ̇2 cos2 φ − rφ̇2 +
µ⊕
r2

=
dr

m
+ gr +

ur

m
(11)

rθ̈ cos φ + 2ṙθ̇ cos φ − 2rθ̇φ̇ sin φ =
dθ

m
+ gθ +

uθ

m
(12)

rφ̈ + 2ṙφ̇ + rθ̇2 sin φ cos φ =
dφ

m
+ gφ +

uφ

m
(13)

Where, m represents the mass of the LEO. Selecting as state

variables the three spherical coordinates and its derivates, it

is defined the following non-linear model for the LEO’s orbit

dynamics:

ṙ(t) = v(t) (14)

v̇(t) = r(t)ω2
θ(t) cos2 φ(t) + r(t)ω2

φ(t) − µ⊕
r2(t)

+

dr

m
+ gr +

ur

m
(15)

θ̇(t) = ωθ(t) (16)

ω̇θ(t) =
−2v(t)ωθ(t)

r(t)
+ 2ωθ(t)ωφ(t) tan φ(t) +

dθ

mr(t) cos φ(t)
+

gθ

r(t) cos φ(t)
+

uθ

mr(t) cos φ(t)
(17)

φ̇(t) = ωφ(t) (18)

ω̇φ(t) =
−2v(t)ωφ(t)

r(t)
− ω2

θ(t) sin φ(t) cos φ(t) +

dφ

mr(t)
+

gφ

r(t)
+

uφ

mr(t)
(19)

An analysis of (11)-(13) and (14)-(19) reveals that a direct

analytical solution is not viable due to the coupling of non-

linear ordinary differential equations. Approximation tech-

niques shall be used, taking into account that di, gi and ui

are assumed to be external input signals. It is also evident,

that the variable θ(t) does not appear in the dynamic model.

This fact is of special importance for the definition of a nom-

inal model, where a nominal value of θ(t) has not influence.

The orbit of the GOCE is characterized for: a low eccen-

tricity (< 0.005), a high inclination angle, a mean altitude

(r0) of 250km and a quasi constant angular velocity (ω0)

of 1.17mrad/s [1]. Considering these conditions as a nomi-

nal scenario and developing the corresponding linearization
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(a) Nominal orbit in IRF
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(b) Quasi polar characteristic
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(c) Circular form
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(d) Inclination angle

Fig. 3. Simulation results evidencing nominal orbit charac-

teristics

of (15), (17) and (19), the satellite’s orbit dynamics can be

approximated through the following linear model:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̂r
˙̂v
˙̂
θ
˙̂ωθ

˙̂
φ
˙̂ωφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

3ω2
o 0 0 2roωo 0 0

0 0 0 1 0 0

0 −2ωo
ro

0 0 0 0

0 0 0 0 0 1

0 0 0 0 −ω2
o 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r̂

v̂

θ̂

ω̂θ

φ̂

ω̂φ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ (20)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1
m

0 0

0 0 0

0 1
rom

0

0 0 0

0 0 1
rom

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ d̂r

d̂θ

d̂φ

⎤⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1
m

0 0

0 0 0

0 1
rom

0

0 0 0

0 0 1
rom

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ ûr

ûθ

ûφ

⎤⎥⎦

This linear model represents the incremental dynamics, due

to exogenous perturbations, around a nominal circular orbit

with constant radius (r0) and constant angular velocity (ω0).

It is important to remark that residual gravitational terms

are not included into the perturbations to be rejected, be-

cause the GOCE mission is oriented to measured such grav-

ity anomalies. A detail analysis of (20), shows interesting

characteristics of the linear approximation: first, the orbit

plane dynamics and the NORF declination coordinate are

decoupled. This means that if (20) is used for the controller

synthesis, motion in the orbit plane can be considered sep-

arately from the out-of-plane dynamics. Also, it is evident

that the polar angle of the orbit plane (θ̂), is not present

in the dynamics described by (20), confirming its nature as

cyclic variable. Based on the above conclusions, the linear

approximation can be studied as three separate systems: a

third order system (dynamics in the orbit plane), a second

order system (the out of plane dynamics) and a first order
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system (a cycle variable that not requires control). This is

one of the most important results of the modelling approach

followed, considering that a non-linear problem is adequately

approximate, for a LEO with low eccentricity, into a linear

decoupled plant.

4. Uncertainty modelling
In order to characterized the error introduced by the assump-

tion of a circular nominal orbit, a comparative study is de-

veloped between this scenario and the numerical solution of

the non-linear model described in (8)-(10). The conclusions

demonstrate that error in the radial component is less than

1% while in the angular component is less than 9%. Thus,

parametric uncertainty can be used in (20), considering the

following parameter sets:

r0 = r̄0(1 + 0.01∆r) with |∆r| ≤ 1 (21)

ω0 = ω̄0(1 + 0.09∆ω) with |∆ω| ≤ 1 (22)

Other sources of uncertainty are the unmodeled dynamics

of sensors (gradiometer) and actuators (thrusters), the ef-

fects of exogenous disturbance not characterized (see sec-

tion 5) and the impact of noise in different channels of the

controlled system (measurements, control signals). Only re-

cent works [2] supply base information to attempt a fre-

quency quantification that describes the effect of the men-

tioned sources of uncertainty, specially in the Measurement

Bandwidth (MBW). The techniques for gravity field deter-

mination on the GOCE mission are based on Precise Orbit

Determination (GPS /GLONASS orbit monitoring to cm-

precision) and Satellite Gravity Gradiometry. The intersec-

tion of both techniques leads to the definition of the men-

tioned Measurement Bandwidth (MBW) between 5mHz and

0.1Hz [1]. In order to maintain conservative specifications,

the effects of parametric and unmodeled dynamics (spec-

trally estimated) are lumped through an Input Multiplicative

Uncertainty Model (IMUM), that generates the following set

of plants for which the synthesized controller shall guarantee

stability and performance requirements:

Ĝ(s) = Ĝnom(1 + ∆(s)) with |∆(jω)| ≤ 0.68 ∀ω (23)

5. Analysis of exogenous disturbances and
control specifications

As stated before, the GOCE mission requires an important

attenuation of non-gravitational disturbances (mainly drag

forces) in the MBW. In order to deduced the quantitative

value of this performance specification, a characterization

of the Power Spectral Density (PSD) of the along track

atmospheric drag forces is carried out through a compar-

ative study between non-parametric methods (periodogram,

Welch, multitaper), parametric methods (Yulear, Burg) and

subspace methods (MUSIC, eigenvector). Particularly inter-

est is concentrated into the MBW where the control system

has the most stringent work conditions. First results are de-

veloped analyzing the drag forces in the LORF (see Fig. 5).

Through the PSD estimation with non-parametric methods

(multitaper with time-bandwidth product equal to 4), it is
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Fig. 4. Spectral analysis of atmospheric drag
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Fig. 5. PSD of drag accelerations in the LORF

evident that most part of the impact of atmospheric drag is

concentrated at low frequencies and specially, at the funda-

mental and second harmonic of the nominal angular velocity

ω0 (fact that is consistent with the eccentric characteristics

of the orbit). Using parametric methods (Yulear with order

150) and subspace methods (eigenvector with order 50) for

PSD estimation, the worst case of drag spectrum is obtained.

Using this results and taking into account that atmospheric

drag increase its effect at lower distance from Earth’s surface,

emerge an important constraint for the problem: if a circular

orbit (with radius equivalent to the distance at perigee) is

to be considered as nominal case, then the higher magnitude

of drag forces shall be used for determining the attenuation

specifications. Using the respective transformation matri-

ces, the worst case of atmospheric drag and the maximum

allowable disturbance level [2] are rotated to the NORF and

finally analyzed into this reference frame (see fig. 6).

Comparing the atmospheric drag PSD with the maximum

allowable disturbance level in the NORF, the quantitative
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Fig. 6. PSD of drag accelerations in the NORF

attenuation levels are deduced as a function of frequency. In

order to guarantee conservative results, a minimum attenu-

ation of 35dB from D.C to 0.1Hz is assumed as main per-

formance specification for the orbit plane controller. More

relaxed specifications can be defined for the out of plane dy-

namics, due to the fact that worst drag effect in this direction

is under the maximum allowable disturbance level (theoreti-

cally, a controller is not required). It is important to remark

that a deeper analytical cross check between the transfor-

mations made from LORF to NORF and the techniques for

gravity field determination on the GOCE mission remains to

be assessed.

6. control synthesis
The approach followed during the plant modelling define a

decentralized architecture of the control system. In fact, one

controller is related with the orbit plane dynamics, which

are characterized by a two input two output (TITO) model.

The output variables to be considered for this model are the

incremental accelerations in the radial and tangent direction.

It is important to remark that such measures can be deduced

from GOCE sensors, with the subsequent transformation to

the NORF. However, the role of such techniques requires a

deeper formalization and treatment. The second controller is

associated with the out of plane dynamics, which are charac-

terized by a SISO model, considering the incremental eleva-

tion angle acceleration as output. Same considerations made

for orbit plane acceleration measures applied here. For the

TITO and SISO systems described before, the objective is to

find a controller K(s) that guarantees stability and the ful-

fillment of the performance requirements (as deduced in sec-

tion 5) in presence of input multiplicative uncertainty (with

weighting functions as indicated in (23)). The proposed ap-

proach for the synthesis of the orbit controller starts with

a scaling of plant outputs and inputs (time and amplitude

un-dimensionalization), in order to improve the numerical

conditioning of the design problem. Then, a controllabil-

ity (stabilizability) and observability (detectability) analysis

is developed, revealing an interesting conclusion in terms of

the effect of the control signals into the system dynamics.

Specifically, it is explicit a complete controllability of the or-

bit plane dynamics from the tangent component (uθ). This

is an important aspect to be assessed in a later treatment of

balanced thrusters function and in the optimization of the

satellite’s propulsion subsystem. The robust control problem

is then formulated in the frame work of modern H∞ synthe-

sis theories for Singular Value (SV) shaping. The weighting

functions of the augmented plant are adjusted to find an

adequate trade-off between input multiplicative model un-

certainty (|∆(jω)|), disturbance attenuation and penalty in

the control signal (Figs. 7 and 8). It is important to remark
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Fig. 7. Input multiplicative model uncertainty vs. distur-

bance attenuation
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Fig. 8. Penalty in the control signal vs. disturbance atten-

uation

that the H∞ controller is obtained through a Linear Matrix

Inequality (LMI) approach, due to the undamped dynam-

ics that characterize the linear approximation (this situation

makes unfeasible to find a solution with classical matlab al-

gorithms as in [7]). Also, the LMI approach offers a more

flexible frame for H∞ synthesis because requires only two

main assumptions in the augmented model [8]: one, the pairs

A, B2 and A, C2 shall be stabilizable and detectable respec-

tively; second, D22 shall be equal to zero. The verification

of the robustness characteristics are made through the Sin-

gular Value Decomposition of the transfer matrix from the

disturbances to the objectives in the controlled system (Tuy),

whose graphical results (Fig. 9) confirm that ‖Tuy‖∞ ≤ 1 for

all frequencies. Also, in Fig. 10 is presented the maximum

singular values of the transfer matrix that relates the dis-
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turbances to the measured variables, confirming that they

are under the imposed bound (performance weight). The

graphics presented are referred to the scaled system (hence,

1rad/s is equivalent to 1.17mrad/s in the original system).

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

Fig. 9. Max. singular values of cost function Tuy
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Fig. 10. Singular values of sensitivity function

7. Simulation results
The synthesized controller was tested using the scaled model

that integrates the nominal dynamics and the orbit relative

motion as approximated in (20). In Fig. 11 is presented the

output response in the tangent component (θ̂) for the worst

case scenario: a sinusoidal force drag signal (normalized in

amplitude and in frequency) with frequency equivalent to the

nominal ω0 (here normalized to 1rad/s). The maximum am-

plitude of the incremental radial acceleration, for this case,

is around 2e − 3, confirming a disturbance attenuation of

approximately 54dB.

8. Conclusions
In this paper is proposed a modern approach for the attenu-

ation of the atmosphere drag effects into the orbit trajectory

of a LEO. The main contributions are related with the defi-

nition of a linear decoupled plant, a detail frequency charac-

terization of the drag disturbances and a simplified approach

to H∞ robust control synthesis based on an LMI approach.

The resulting controller stabilizes the plant and maintain

drag attenuation specifications in presence of input multi-

plicative uncertainty with a weighting function equivalent to

|∆(jω)| ≤ 0.68 ∀ω.
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(a) Open loop response
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(b) Close loop response
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(c) Zoom of close loop response
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Fig. 11. Time response to a sinusoidal input
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