• 제목/요약/키워드: linear maps

검색결과 211건 처리시간 0.029초

지리산 지역의 생물종 분포모형 구축 및 종풍부도 평가 (Development of Species Distribution Models and Evaluation of Species Richness in Jirisan region)

  • 권혁수;서창완;박종화
    • 대한공간정보학회지
    • /
    • 제20권3호
    • /
    • pp.11-18
    • /
    • 2012
  • 생물다양성에 대한 사회적 관심이 늘어남에 따라 생물다양성 평가, 보호지역 지정, 서식지 관리 및 복원 등 생물자원에 대한 공간적 평가의 필요성이 대두되고 있다. 본 연구는 이러한 야생동물의 서식지에 대한 평가를 위하여 자료의 수집 및 모형화의 기법 연구와 생물종풍부도를 작성하는데 목적이 있다. 종분포모형을 위해 사용된 GAM (Generalized Additive Model)으로 기존의 중첩 분석이나 GLM (Generalized Linear Model)에 비해 환경변수와 반응변수의 관계가 명확하고 이에 따른 해석이 용이하다. 본 연구대상지로는 국립공원, 경관생태보호구역, 수달보호구역으로 지정된 지리산, 백운산, 섬진강을 포함하고 있는 유역을 선정하였다. 대상유역의 토지피복에 따라 층화추출을 통하여 야생동물(포유류와 조류)의 출현/비출현 형태의 현장자료를 수집하였으며, 야생동물의 서식에 영향을 미치는 자연, 사회 경제적 자료를 구축하였다. 각 종에 대한 서식지이용분석과 주요서식인자를 확인한 후, 출현/비출현 모형을 통해 서식지적합성모형을 개발하고, 개별 종에 대한 서식지적합성지도 작성하였다. 서식지 적합성지도를 산술 합산하여 분류군별(포유류, 조류) 종풍부도, 통합종풍부도를 작성하였다. 개별 종 서식지의 주요인자는 서식지선택에 따라 다르게 나타났다. 고라니나 박새와 같은 몇몇 종들은 저지대에 분포하나, 대부분의 포유류나 조류의 잠재서식지는 국립공원 경계구역이나 중산간지역에 많이 분포하였다. 본 연구의 결과는 환경부에서 수행하는 생물다양성의 평가, 보호지역의 지정 등의 기초자료로서 활용될 수 있을 것이다.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • 대한원격탐사학회지
    • /
    • 제21권3호
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

Quantification of Gadolinium Concentration Using GRE and UTE Sequences

  • Park, So Hee;Nam, Yoonho;Choi, Hyun Seok;Woo, Seung Tae
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권3호
    • /
    • pp.171-176
    • /
    • 2017
  • Purpose: To compare different MR sequences for quantification of gadolinium concentration. Materials and Methods: Gadolinium contrast agents were diluted into 36 different concentrations. They were scanned using gradient echo (GRE) and ultrashort echo time (UTE) and R1, $R2^*$ and phase values were estimated from collected data. For analysis, ROI masks were made for each concentration and then ROI value was measured by mean and standard deviation from the estimated quantitative maps. Correlation analysis was performed and correlation coefficient was calculated. Results: Using GRE sequence, R1 showed a strong linear correlation at concentrations of 10 mM or less, and $R2^*$ showed a strong linear correlation between 10 to 100 mM. The phase of GRE generally exhibited a negative linear relationship for concentrations of 100 mM or less. In the case of UTE, the phase had a strong negative linear relationship at concentrations 100 mM or above. Conclusion: R1, which was calculated by conventional GRE, showed a high performance of quantification for lower concentrations, with a correlation coefficient of 0.966 (10 mM or less). $R2^*$ showed stronger potential for higher concentrations with a correlation coefficient of 0.984 (10 to 100 mM), and UTE phase showed potential for even higher concentrations with a correlation coefficient of 0.992 (100 mM or above).

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

불균질.이방성 대수층의 지하수 유동분석에 지구통계기법의 응용 (Application of Geostatistical Methods to Groundwater Flow Analysis in a Heterogeneous Anisotropic Aquifer)

  • 정상용;유인걸;윤명재;권해우;허선희
    • 지질공학
    • /
    • 제9권2호
    • /
    • pp.147-159
    • /
    • 1999
  • 불균질.이방성 대수층에서의 지하수 유동분석을 위하여 지구통계학적 기법을 적용하였다. 연구지역은 대한광업진흥공사의 수문지질조사 사업지구인 전남 함평군 손불면 일대이며, 이 지역 관정의 표고와 지하수위의 선형회귀분석 결과 상관성이 매우 큰 것으로 나타났다. 정규크리깅과 코크리깅을 이용하여 작성된 지하수위 등고선도는 산간지역에서 차이가 크고, 서해에 인접한 구릉이나 평지에서는 큰 차이가 없다. 표고 등 고선도를 기준으로 2개의 지하수위 분포도를 비교해 보면 코크리깅에 의한 것이 정밀성이 더 큰 것으로 나타났다. 정규크리깅과 코크리깅에 의해 작성된 지하수위 등고선도에서 손불면의 지하수 유동상태를 검토해보면, 지형이 높은 산간지역에서 서해바다에 인접한 평야지역으로 지하수가 유동하고 있다. 불균질 이방성.대수층에서의 지하수 유동분석에 대한 지구통계학적 기법의 실효성을 검토하기 위하여 지하수 유동측정기(model 200 $GeoFlo^{R}$)를 이용해서 2개 지하수공내의 유향을 측정한 결과, 측정된 지하수 유향은 정규크리깅과 코크리깅의 지하수위 등고선도에서 추정된 지하수 유향과 대체로 일치하였다.

  • PDF

PLCM을 이용한 카오스 블록 암호화 (Chaotic Block Encryption Using a PLCM)

  • 신재호;이성우
    • 전자공학회논문지CI
    • /
    • 제43권3호
    • /
    • pp.10-19
    • /
    • 2006
  • 본 논문에서는 동력학적 특성이 좋은 PLCM(Piecewise Linear Chaotic Map)을 이용한 128비트의 키와 128비트 평문 블록의 카오스 블록 암호화 기법을 제안한다. 본 논문에서 제안한 기법은 128비트의 키를 PLCM을 이용해서 4개의 32비트 서브키로 이루어진 세션 키 생성하는 키 생성과정과 128비트 평문을 4개로 나눈 32비트 서브 블록들과 4개의 서브키와의 XOR(exclusive-OR)된 값을 PLCM의 초기 값과 반복회수로 사용해서 암호문을 생성하는 암/복호화 과정으로 이루어져 있다. 본 논문에서는 제안한 기법이 실험 결과와 안전성 분석을 통해 여러 가지 통계적 공격에 매우 강하고 Avalanche Effect와 Randomness 특성이 매우 좋음을 보여준다.

낙동강 유역의 선형개발사업이 산림 단편화에 미치는 영향 (Effect of Linear Development Projects on Forest Fragmentation in the Nakdong River Watershed)

  • 정성관;박경훈;오정학
    • 환경영향평가
    • /
    • 제11권3호
    • /
    • pp.117-127
    • /
    • 2002
  • This study tested the usefulness of landscape indices for quantifying forest fragmentation due to linear development projects. Research was carried out in the middle-upper Nakdong River watershed, which has been affected by the expressway building, or national road-widening. Landscape indices were calculated from the forest cover maps before and after road-building using FRAGSTATS 3.1. We could successfully demonstrate the forest fragmentation based on landscape indices; (1) patch size decreased, and edge density and patch density increased (2) roads simplified patch shapes, especially in the larger patches, (3) patch core area size decreased, and core area density increased, (4) the distance increased between the focal patch and each of the other patches within the search radius (=1km) as a result of roads. We suggest several important needs for future researches, including continued investigation of scaling issues, development of indices that measure specific components of spatial pattern, and study of the relationships between forest fragmentation and ecological processes.

부분용적효과를 고려한 확산텐서영상에 대한 관심영역 분석 연구 (ROI Study for Diffusion Tensor Image with Partial Volume Effect)

  • 최우혁;윤의철
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권2호
    • /
    • pp.84-89
    • /
    • 2016
  • In this study, we proposed ameliorated method for region of interest (ROI) study to improve its accuracy using partial volume effect (PVE). PVE which arose in volumetric images when more than one tissue type occur in a voxel, could be used to reduce an amount of gray matter and cerebrospinal fluid within ROI of diffusion tensor image (DTI). In order to define ROIs, individual b0 image was spatially aligned to the JHU DTI-based atlas using linear and non-linear registration (http://cmrm.med.jhmi.edu/). Fractional anisotropy (FA) and mean diffusivity (MD) maps were estimated by fitting diffusion tensor model to each image voxel, and their mean values were computed within each ROI with PVE threshold. Participants of this study consisted of 20 healthy controls, 27 Alzheimer's disease and 27 normal-pressure hydrocephalus patients. The result showed that the mean FA and MD of each ROI were increased and decreased respectively, but standard deviation was significantly decreased when PVE was applied. In conclusion, the proposed method suggested that PVE was indispensable to improve an accuracy of DTI ROI study.

Detection of Tendon Tears by Degree of Linear Polarization Imaging

  • Kim, Ji-Hoon;Oh, Jung-Hwan;Kang, Hyun-Wook;Lee, Ho;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • 제13권4호
    • /
    • pp.472-477
    • /
    • 2009
  • A Stokes polarimetry imaging (SPI) system was developed and utilized to detect tendon tears by constructing the degree of linear polarization (DOLP) image maps after linearly polarized light illumination. The micro and partial-thickness tears of turkey tendons were made and imaged by the SPI system at different incident polarization angles (IPA) with different mechanical loads on the tendon. The micro and partial-thickness tendon tears were detected by the DOLP images due to weak birefringence around the tears. The tendon tears were detected by a highest DOLP contrast at longest visible wavelength (Red, 650 ${\pm}$ 50 nm). All polarized images showed modulated DOLP as the incident polarization angle (IPA) was varied. The varying DOLP allowed the optimal detection of the micro and partial-thickness tendon tears at a certain IPA. The SPI system with variable IPA and spectral information can improve the detection of the tendon tears by higher visibility of fiber orientations, and thereby improve diagnosis and treatment of the tendon related injuries.