• 제목/요약/키워드: linear friction

검색결과 544건 처리시간 0.028초

콜부르크-화이트 방정식의 수치해와 이의 적용 (Numerical Solution of Colebrook-White Equation and It's Application)

  • 김민환;송창수
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.613-618
    • /
    • 2005
  • In analysis of pipelines or pipe network we calculated the friction loss using Hazen-Williams or Manning formula approximately, or found one by friction coefficient from Moody diagram graphically. The friction coefficient is determined as a function of relative roughness and Reynolds number. But the calculated friction coefficient by Hazen-Williams or Manning formula considered roughness of pipe or velocity of flow. The friction coefficient in Darcy-Weisbach equation was obtained from the Moody diagram. This method is manual and is not exact from reading. This paper is presented numerical solution of Colebrook-White formula including variables of relative roughness and Reynolds number. The suggested subroutine program by an efficient linear iteration scheme can be applied to any pipe network system.

퍼지논리를 이용한 마찰력 보상에 관한 연구 (Friction Compensation Scheme using a Fuzzy Logic)

  • 조용대;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.679-681
    • /
    • 1995
  • In this paper, a friction compensation scheme using a fuzzy logic is presented. For the precision positioning and tracking control, the proper friction compensation is essential. Friction compensation schemes based on velocity and controlling input or desired velocity, have limitations because the compensation values are fixed. In this paper, a fuzzy friction compensation scheme adjusts the compensation value depending on the velocity and the position error. The proposed fuzzy friction compensator is implemented in a linear positioning system. The performance is illustrated by simulations and experiments.

  • PDF

EIGENVALUE APPROACH FOR UNSTEADY FRICTION WATER HAMMER MODEL

  • Jung Bong Seog;Karney Bryan W.
    • Water Engineering Research
    • /
    • 제5권4호
    • /
    • pp.177-183
    • /
    • 2004
  • This paper introduces an eigenvalue method of transforming the hyperbolic partial differential equations of a particular unsteady friction water hammer model into characteristic form. This method is based on the solution of the corresponding one-dimensional Riemann problem that transforms hyperbolic quasi-linear equations into ordinary differential equations along the characteristic directions, which in this case arises as the eigenvalues of the system. A mathematical justification and generalization of the eigenvalues method is provided and this approach is compared to the traditional characteristic method.

  • PDF

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

병렬형 역진자와 비선형 $H_2$/H_{\infty}강인제어 (Robust Nonlinear $H_2$/$H_{\infty}$Control for a Parallel Inverted Pendulum)

  • 한성익;김종식
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.1065-1074
    • /
    • 2000
  • A robust nonlinear $H_2$/$H_{\infty}$ control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust $H_2$/$H_{\infty}$ control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.

속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구 (The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure)

  • 조용구;신기홍;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

이송기구의 정밀 위치제어 (Precision Position Control of Feed Drives)

  • 송우근;최우천;조동우;이응석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.266-272
    • /
    • 1994
  • An essential ingredient in precision machining is a positioning system that responds quickly and precisely to very small input signal. In this paper, two different positioning systems were presented fot the precision positioning control. The one is a friction drive system, the other is a ballscrew system. The friction drive system was composed of an air sliding guide and a friction drive. The ballscrew system was made of a ballscrew and a linear guide. Nonlinear behaviors of the given systems tend to make the system inaccurate. The paper looked at the phenomena that has caused the positioning error. These apparently nonlinear phenomena can be attributed mainly to the presence of the nonlinear friction and slip effect plus the dynamic change from the microdynamic to the macrodynamic and form the macrodynamic to the microdynamic. For the control of the positioning system, the control algorithm based on a neural network is suggested. The FEL(Feedback Error Learning) controller can learn the inverse dynamics of a nonlinear system by using the neural network controller, and stabilize the system by a linear controller. In the experiment, PTP control is implemented withen the maximum error of 0.05 .mu.m ~0.1 .mu. m when i .mu.m step reference input is applied and that of maximum 1 .mu. m when 100 .mu.m step reference input is given. Sinusoidal inputs with the amplitude of 1 .mu.m and 100 .mu. m are used for the tracking control of the positioning system. Experimental results of the proposed algorithm are shown to be superior to those of conventional PD controls.

  • PDF

단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계 (Design of Friction Dampers for Seismic Response Control of a SDOF Building)

  • 민경원;성지영
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

Review of Testing Configurations for Simultaneous Measurement of Friction and Triboelectrification

  • P. R. Deshmukh;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • 제40권4호
    • /
    • pp.118-132
    • /
    • 2024
  • The triboelectric nanogenerator (TENG) has emerged as a groundbreaking technology for harvesting clean and sustainable energy cost effectively. For reliable TENG design, minimizing wear damage at the friction layers is crucial. This review provides a comprehensive overview of tribometer-integrated TENG testing configurations used in the simultaneous investigation of both tribological and electrical performance. It considers configurations such as plate-on-plate, ball-on-disc, and ball-on-flat tribometers designed for linear reciprocating or rotating sliding friction tests. These tribometers are either specifically designed or adapted for TENG testing. Triboelectric material holders facilitate friction tests by establishing electrical connections from the triboelectric materials or electrodes, thereby enabling accurate measurement of electrical signals. Electrometers and oscilloscopes record electrical outputs such as short-circuit current and open-circuit voltage. This integration enables the simultaneous measurement of both friction and electrical outputs, providing a thorough understanding of TENG performance. The review also summarizes how factors such as normal force, sliding frequency, and rotating speed affect friction coefficients and TENG performance. It also examines the relationship between the coefficient of friction and tribocharges under various loads and frequencies. The review emphasizes the importance of these testing configurations for evaluating both friction and electrical performance, which are crucial for optimizing TENG efficiency. Finally, the review explores future prospects for developing innovative tribometer designs suited for both tribology and TENG testing.