• 제목/요약/키워드: linear experimental system

검색결과 1,220건 처리시간 0.032초

HLSM의 치 형상에 따른 추력 및 수직력 특성에 관한 연구 (A Study on the Thrust and Normal force Characteristics by Tooth Shapes of HLSM)

  • 이상호;오홍석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.318-324
    • /
    • 2004
  • In the recently, the necessity of linear position control motors have been increased in the various fields of the automatic control system. In this paper, we have designed the tooth models of the hybrid type linear stepping motor(HLSM); rectangular type(RT), triangle type(TrT), round type(RdT) and wedge type(WT), and proposed the optimum tooth shape of the HLSM by simulating(Flux2D) the thrust and normal force characteristics with the finite element method(FEM) and the virtual work method. And we have manufactured the prototype HLSM with the optimum tooth, and measured the various values by using experimental system. Thus, we have confirmed the justice of theory because the computed and the experimental results almost coincide with.

편측식 선형 유도전동기를 구동원으로 한 반송시스템 (The Conveyer System Drived by a Single-Sided Linear Induction Motor)

  • 임달호;이철직;조윤현
    • 대한전기학회논문지
    • /
    • 제39권5호
    • /
    • pp.445-452
    • /
    • 1990
  • In order to design a conveyer system which is driven by short primary single sided linear induction motors (SLIM), the thrust force characteristics of SLIM have been calculated from the fundamental equation based on Maxwell's electromagnetic equation and by varying the various design parameters. A conveyer system of moving secondary has been constructed using the design values obtained by the simulation and these values are compared with the experimental values. The control method of the conveyer system is also proposed.

자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법 (A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

Controller Design for Static Reactive Power Generator in Transmission System

  • Han, B.M.;Soh, Y.C.;Kim, H.W.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.398-403
    • /
    • 1998
  • This paper describes a controller design for the stator reactive power generator in the transmission system. The controller of static reactive power generator was designed using a mathematical model and non-linear state feedback. The performance of controller was verified using computer simulation with EMTP code and experimental work with scaled-model. The dynamic interaction with a simple power system was also analyzed using both the simulation model and hardware scaled-model. Both simulation and experimental results prove that the controller using PI block and non-linear state feedback offers better performance than the controller using PI block only.

  • PDF

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

Development of New Conveyer Directly Driven by Contact-less Energy Transmission System

  • Park, Hyung-Beom;Park, Han-Seok;Woo, Kyung-Il
    • 조명전기설비학회논문지
    • /
    • 제23권3호
    • /
    • pp.18-23
    • /
    • 2009
  • This paper focuses on development of new conveyer directly driven by the contact-less energy transmission system. The effect of the resonant circuit and the flux linkage characteristics caused from that are analyzed by using 3D finite element analysis. From the result it is shown that the resonant circuit needs to transfer energy from the primary core to the secondary core. Also the influence of the linear induction motor on the contact-less energy transmission system is presented. New conveyer and the experimental apparatus was manufactured by using the contact-less energy transmission system and the linear induction motor. Possibility of realization of the conveyer is proved by comparison the simulation result which is obtained by using 2D finite element analysis with experimental one and the characteristic of the voltage and resonant current.

External Force Control for Two Dimensional Contour Following ; Part 2. Analysis and Implementation of Analysis Control

  • Park, Young-Chil;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.135-139
    • /
    • 1992
  • Control of tool-environment interaction force to comply the robot system to an environment is of vital in many automated process. This paper presents the implementation of an adaptive force control with commercial robot system in two dimensional contour following task. A model reference adaptive control system, combined with the linear compensators, is implemented. That is, a use of adaptive control is to provide an auxiliary control system so that the contour following performance can be improved from that of using linear control system only. Hyperstability is used to derive the adaptive control law. Experimental verification of the proposed control system is obtained using PUMA 560 robot system. Data obtained experimentally shows that the use of additional adaptive control system improves the contour following performance about 30% in RMS contact force errors upon that of the system controlled by the linear compensators only.

  • PDF

리니어 컴프레서를 위한 파라미터 추정 및 제어 (Parameter Identification and Control for Linear Compressors)

  • 김규식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.243-245
    • /
    • 2006
  • A closed-loop sensorless stroke control system for a linear compressor has been designed. The motor parameters are identified as a function of the piston position and the motor current. They are stored in ROM table and used later for the accurate estimation of piston position. Also it was attempted to approximate the identified motor parameters to the 2nd-order surface functions. Some experimental results are given in order to show the feasibility of the proposed control schemes for linear compressors.

  • PDF

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

시간지연 제어기를 이용한 쿼드로터 시스템의 자세제어의 실험적 연구 (Experimental Studies of Attitude Control of a Quad-rotor System using a Time-delayed Controller)

  • 임정근;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.381-388
    • /
    • 2014
  • In this paper, the attitude of a quadrotor system is controlled by a time-delayed control method which uses the previous information to cancel out uncertainties in the system. Although the linear controller works for the attitude control, the robust performance against disturbance is relatively poor. Therefore, a time-delayed controller as a robust controller is used. Experimental studies are conducted to validate the performance by the time-delayed control method. The performances of both a linear controller and a time-delayed controller are compared.