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Abstract

Control of tool-environment interaction force to comply
the robot system to an environment is of vital in many automated
process. This paper presents the implementation of an adaptive
Jorce control with commercial robot system in two dimensional
contour following task. A model reference adaptive control
system, combined with the linear compensators, is implemented.
That is, a use of adaptive control is to provide an auxiliary
control system so that the contour following performance can be
improved from that of using linear control system only.
Hyperstability is used to derive the adaptive control law.
Experimental verification of the proposed control system is
obtained using PUMA 560 robot system. Data obtained
experimentally shows that the use of additional adaptive control
system improves the contour following performance about 30
% in RMS contact force errors upon that of the system
controlled by the linear compensators only.

1. Introduction

Control of tool-environment interaction force to comply
the robot system to an environment is of vital for the successful
task accomplishment in many automated process. Classical
examples of tasks required such compliant motions are
peg-in-hole assembly, contour following, crank turning etc.
Robot force control, which has historically received much
attention, provides a fundamental means of relating manipulator
compliant motion to the force which it causes.

This paper presents the analysis and implementation of
an adaptive force control with the commercial robot system. It
is designed to use a commercially available robot system in
two dimensional contour following task for the surface scanning
purpose, where the exact shape and location of the contour are
previously unknown. While commercially available robot
systemns are very capable in many tasks, use of such robot
systems to the task which requires a compliant motion is often
limited since they are usually functioning as pure position
controlled devices. There is usually no means of controlling the
force directly. Also accessing the internal structure of the
controller may not be possible. While the modification of the
controller to achieve a direct force control capability is not an
impossible task, such modification may not be allowed in many
situations.

External force control by accommodation, so that the
commercially available robot system can be used without any
modification, in two dimensional contour following task with a
constant tool orientation is implemented by Park and Kim[1]. In
there, the linear, decoupled model of two dimensional contour
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following system is derived first. Then the lead compensators
are obtained using root locus method. While a good contour
tracking is obtained using a linear control system, experimental
data shows that the contour following system performance is
highly depending on the large and high bandwidth noise, where
the effect of system model inaccuracy is also considered as a
noise. Thus an adaptive control is considered to compensate
such unmodeled system dynamics.

Many different adaptive control schemes have been
proposed in the literature, but the most of them are not quite
mature for the practical use, as pointed by Astrom[2]. Especially
under the influence of a disturbance acting on the system which
is very typical in an industrial environment, only a few
successful use of them has been reported. There are much
discussions on the practical implementation issues in the
literature, for instance Wittenmark[3]. Nevertheless the adaptive
control will be very useful if the care is taken.

The main use of adaptive control system in this work is
to improve the system performance upon that of the system
using the linear compensators only (See Park and Kim{1] for the
contour tracking performance using linear control system). Due
to the difficulties in implementation as well as a design
constraint (use of position controlled robot system) imposed in
our work, an adaptive control system is used to complement the
linear control system. That is, an adaptive controller combined
with the linear control system has been implemented as a final
control law.

The brief preview of this work is as follows. In Section
2, an appropriate adaptive control mechanism for this work is
selected first. Then the adaptive control law is derived using
hyperstability. We also discuss many practical issues on the
implementation of an adaptive control in a noisy environment
(which is not an unusual situation for the force control problem).
Experimental verification of the proposed countrol structure is
presented in Section 3 using a PUMA 560 robot system. Finally
the results obtained in this work as well as discussions are
summarized in Secuon 4.

2. Adaptive Control System

To improve the contour following system performance
upon that of the system using linear compensators only, a model
reference adaptive control system is added. This section first
presents the selection of an appropriate adaptive control
mechanism. Then the adaptive control law is derived.

2.1 Selection of Adaptive Control Structure

The main use of adaptive control in this work is to
improve the system performance in the contour following upon
that of the system using the linear compensators only. As



pointed out earlier, experimentally obtained data using linear
compensators only shows that the system is affected by a
relatively large and high bandwidth noise. It is well known that
the adaptive control system developed with idealized system
model will mostly be unstable under the influence of
disturbance, even for the bounded and small disturbance[4].
Much progress is made toward the robust adaptive control[4,5],
but the preliminary experimental test results show that it is not
quite adequate yet for the practical use.

To select an appropriate adaptive control structure for
our work, first consider the role of linear compensators H, and
H, in the contour following system. One way to implement the
adaptive control is adjustments of H, and H, directly. But it is
not feasible because of the following reason. Whatever the
adaptive control mechanism is, the only available information
we can use to adjust the control system is a force error. Thus if
H, and Hy are going to be adjusted directly, there are two
controllers to be adjusted from a single information and we do
not know how this single information can be resolved. Returning
to the discussion of the role of compensators H, and H, in the
linear contour following system, they are used to provide
different control inputs to x and 6-paths from a common
information, which is force error (See Figure 3 in [1]). In other
words, the linear compensators provide the way of resolving a
single information to invoke two different motions. This
consideration provides the following requirement in the selection
of an adaptive control mechanism. (1) We need to consider two
linear compensators as a part of the robot system. (2) Then,
whichever the adaptive control mechanism is selected, it should
be the one working only on the force error signal. (3) Finally,
the modified force error by adaptive mechanism will be fed into
the linear compensators.

With the interpretation of H, and H, as command
generators from a common signal, consider a selection of
adaptive control structure. Model reference adaptive control
system and self-tuning regulators are two main structures used.
Self-tuning regulator type adaptive control[6] uses the system
model identified by the on-line type estimator. It is indirect
control method. Successful implementation of a self-tuning
adaptive controller has been reported, for example the works by
Fortescue, Kershenbaum and Y dstie[7] and Dumont[8}. But for
this work, any indirect adaptive control method cannot be used
due to the following reason. When the system is identified from
the measured information (which is a contact force), the
identified system model has a completely different dynamic
characteristics from the one obtained in the linear model. We
think that the reason of why not to fit the proper model is that
the order of magnitude of the noise is almost the same of that of
the system output itself. We tested this noise effect on the
identification of system model extensively using computer
simulated data. This consideration fixes the model reference
adaptive control system[9] as an adaptive control structure to be
used in our work.

Successful implementation of model reference adaptive
control structure requires an appropriate reference model
representing the actual system. It is very important especially
under the large disturbance which makes the implementation of
adaptive control very hard[10]. To find a reference model,
consider the linear model of contour following system again. In
the linear model, an assumption was made such that the contact
force f, was independent from 6-path motion. Thus the
following 5th order reference model can be the one representing
the relation between the input (which is a force error) and the
output (a contact force).

H[

In equation (2.1), H, is the first order force regulator, ARM, is
the third order robot system x directional Cartesian dynamics

T[:¢l]
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] ® ARM, (2.1)
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and the integrator is approximated by the trapezoid rule. In
general, a use of high order reference model raises many
problems. As pointed out by Ortega[l1], the model reference
adaptive control system with high order reference model carries
serious practical and numerical difficulties. Also it is well
known that the control system having a low order is less
sensitive to the uncertainties than that having a high
order[12,13). Another difficulty in using a system model given
by equation (2.1) is that it is a nonminimum phase system. This
fact makes the application of adaptive control very difficult since
many adaptive control methods are derived based on the explicit
assumption of stable zeros. For example, unified adaptive
control by Landau and Lozano[l4] was developed with the
system model which has only stable zeros. While the adaptive
control system developed for the minimum phase system shows
a good parameter convergence property, many problems have
been reported when such control algorithm is applied to the
nonminimum phase system{15]. Unbounded input is a typical
problem. While there are many works to deal with the
nonminimum phase system[16,17], they use an explicit on-line
system identification procedure, thus cannot be used for this
work.

Consideration of the problems caused by the high order
reference model requires a selection of lower order reference
model. Besides, in practical engineering problem, any model is
only an approximation of the original system, where the order
of system model is usually lower than that of the actual system.
To find a simpler reference model, consider contour following
system as a force regulator. As we discussed before, when there
is a force error, the force error is going to be removed by the
actual robot motion. Also recall that the robot motion (as a
mechanical device) can well be described by the second order
differential equation. Thus if we characterize the contour
following system as a pure mechanical system, then the second
order reference model can adequately describe the input and
output relations. This consideration asks the use of reference
model by an artificially constructed, a second order model, but
having very similar dynamic characteristics with the linear
contour following system.

Figure 1 presented in next section shows the adaptive
control system used in this work. As shown in Figure 1, the
implementation of a model reference adaptive control system is
to tune the input. Even though the linear compensators are not
shown explicitly, the modified force error by adaptive control
mechanism is fed into them so that two different motions from a
single information can be generated.

2.2 Adaptive Control Law
Based on the discussions of the previous section, a
reference model and the actual system including linear
compensators are assumed to be second order systems. Consider
the reference model given by the following one step ahead form
of discrete transfer function.
Y(k+ 1) = almy(k) +a2my(k_ 1) + bl Err(k) + b2mferr(k_ l)
2.2)

Equation (2.2) describes the time invariant reference model,
where y(k) is the output and f,,, (k) is the input to the reference
model (which is a force error). It is assumed that the reference
model is stable. For the actual system, consider the following
second order discrete equation.

xwk+1) = ax(k) +ayx(k—1) +byu(k) + bou(k~1)  (2.3)
In equation (2.3), x(k) is the output of the actual system and u(k)
is the control input to the actual system. The actual system is
also assumed as a time invariant system. This implies that all g,
and b, in equation (2.3) are constant, but unknown. One further
assumption required is that we know the sign of b,. The sign of
b, can easily be identified from the step response of the contour
following system, thus does not introduce any difficulty in the
design of adaptive control law. Subtracting equation (2.3) from



(2.2), the generalized error equation is obtained as follows,
e(k+1) = aime(k) + azme(k = 1) +(ain ~ a (k)
+(azm —a2)x(k = 1)+ bimfer(k) + bamfer(k— 1)
- blu(k) - bzu(k‘ ]) (2.4)
where e(k) = y(k) - x(k) (a generalized error).

Design of adaptive control mechanism implementing a
signal synthesis approach is finding an appropriate input u(k) so
that the error dynamics defined by equation (2.4) is
asymptotically stable. To achieve this design objective, consider
the following form of input u(k),

u(k) = a(kx(k) + az(kp(k ~ 1) + as(k)ferlk)
+ (k)Y er(k~ 1) + os(R)u(k - 1) (2.5)
where « (x), 1 = 1, ..., 5 are adjustable parameters. Then the

error dynamics given by equation (2.4) can be rewritten as
follows.

e(k+1) = ayme(k) + azme(k- 1)
+lam—ay -b;al(k)'l.x(k) +laym—az— b.a;(kﬂx(k— 1)
+[bim = b103(E) Werr(k) + [ b2 — br0a(B) Yer(k— 1)

+[-by - bros(k)u(k—1) (2.6)

Equation (2.6) shows the evolution of generalized error e(k) in
terms of adjustable parameters a(k). If ok) are going to be
adjusted properly so that the error dynamics of equation (2.6) is
asymptotically stable, the design objective has been achieved.
To find adaptive control law using hyperstability [18],

convert equation (2.6) into the following equivalent feedback
system.

e(k+ 1) = aime(k) +azme(k— 1) + wi(k+1)

wk+1)=e(k+1)+doe(k), -1<ds<1

wk+ 1) =-wi(k+1)

=Tbio(k) +a) - aim (k) +[br1oa(k) + @z ~ axm Pk - 1)

+b103(k) = b Yer(F) + [b1004(K) = bam Vferr(k - 1)

Hbyas(k) + b Tu(k- 1) @29
Equations (2.7) and (2.8) define a linear time invariant
feedforward block, where d, in equation (2.8) will be defined
later. Equation (2.9) defines a nonlinear time varying feedback
block. For the equivalent feedback system defined by equations
(2.7) to (2.9), if the following transfer function is a strictly
positive real (SPR) function,

H(z) =

@7
(2.8)

22 vdgz
22 ~a pz - agm @2.19)

and the equivalent feedback system satisfies the following
inequality,

K
N(0,k) = T wlk+ DWk+1) 2 —y3 forall k50 2.11)
=0
the system is hyperstable. Consider first a transfer function of
equation (2.10). Since the reference model is a stable system, the
poles of transfer function of equation (2.10) are located within
the unit circle in z plane. So if the following condition is
satisfied, the transfer function of equation (2.10) is SPR.
Re[H(s)] > 0 forall w, where s =jw (2.12)
This can be proven as follows. Since the reference model is
stable, the following relation, which can be easily obtained by
Jury's test, is satisfied.
1+aim—aum>0and 1l —aim—am >0 (2.13)
Also, the real part of H(s) can be obtained by a simple
transformation of z=(I +s)/(I-s) from equation (2.10), to have an
equivalent continuos time domain transfer function (s}, and
then replace s by jw in H(s). In Re/H(s)] obtained, we can see
easily using equation (2.13) that, if we select d, as follows,

-1 <dp < (2.14)

with a positive a,,, , which is the case for this work, equation

1+3ag,
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(2.12) is satisfied. That is, the first condition required for the
system described by equations (2.7) to (2.9) to be hyperstable is
satisfied with d, given by equation (2.14). To prove the second
condition specified by equation (2.11), rewrite it using w(k+1)
defined in equation (2.9) as follows, where the adaptation starts
from k=0.

A0.J1) = B Wk Dxlsian(h) + a1 - aus]
+§0v(k+ Dx(k— D)Ib,oy(k) +a; —azm]
+ Wk + 1o 1300 - 1)
+:§Io Wk + 1)fer(k— Dby os(k) — ban)

&
+k§0"(k+ Du(k - DIbyas(k) + by] (2.15)

In equation (2.15), if each term of the right hand side satisfies
the inequality given by equation (2.11), n(0.k, ) in equation
(2.15) will satisfy the condition required by (2.11). To obtain
this, consider the following parameter adaptation scheme,

() = ok = 1+ D] = E0duDI+ou(-1)  2.16)

where o, (-1) represents the initial values of parameters and

¢, [v(k)] represents a function of v(k). Then the first term of the
right hand side of equation (2.15) can be written as follows.
&

nl(o,k1)=k§;v(k+ DXL 0 (k) + a1 - aim)
K

= 3w+ Dx(BIB1 2 1 IMD] +brou(=1) +a; - ain]2.17)
k=0 J=0

If we select
01 [v(R)] = sga(br)gix(bk+1), g1>0 (2.18)
where sgn(b,) is +1 for b,> 0 or -1 for b, < 0 and g, is a positive
constant gain, then the equation (2.17) can be rewritten as
follows.
1 A byay(~1)*a;—a1m 12
n1(0,k;) = 7b15gn(bl)gl[£«0v(k+ D) + =5 =]

Ky
+3bisgn(bi)gil £ v+ Da(R? = g antby o (-

a;—aml* 2 —mwm(ﬂ) +a;-aim)? = y; 2.19)
That is, if the following parameter adaptation law is used to
adjust a, (k),

a (k) = ok~ 1) +sgn(b)gx(k)W(k + 1) (220
the first term of right hand side of equation (2.15) will satisfy
the inequality of equation (2.11). Using exactly the same
argument, if all the other parameters are adjusted as follows,

ay(k) = ax(k~ 1) +sgn(b)gx(k— Ik + 1) 2.21)
as(k) = as(k— 1) +sgn(b)gyfer- (VK + 1} (2.22)
as(k) = ag(k— 1) +sgn(b)gafer(k - DK+ 1) (2.23)
as(k) = as(k—1) +sgn(b)gsu(k -~ Dk +1) (2.24)

then equation (2.15) so as the equation (2.11) will be satisfied.
This proves that the equivalent feedback system given by
equations (2.7) to (2.9) is hyperstable.

Equations (2.20) to (2.24) provide the adaptive control
laws. To implement those control laws, one further consideration
is required. When the parameters o, (k) are updated at instant &,
v(k+1), which is not an available information at instant & yet, is
required. Thus v(k+/) needs to be estimated from the
information available at instant k and it can be done as follows.
The output of the actual system of equation (2.3), when a, (k1)
is used instead of (k) , is given as follows.

xO(k + 1) = ax(k) + aax(hk — 1) + b ul(k) + byu(k - 1) (2.25)
In equation (2.25), the control input at instant k is computed
using o (k-1) which is available at instant k as follows.



ul(k) = o (k- k) + az2(k— Dx(k - 1) + az(k — 1)fern(k)
(k= 1)fer(k - 1)+ as(h— Du(k- 1) (2.26)
Since the output x° (k+1) is a measurable information at instant
k, we can define a new generalized error and a new output of
linear compensator of equation (2.8) using x° (k+1) as follows.

eOk+ 1) =y k+1)-xk+1) (2.27)
VO(k+1) = €%k + 1) +doe(k) (2.28)
When the equation (2.28) is expanded using equation (2.25) to
(2.27), v ° (k+1) can be expressed as follows.
V(k+1) = ayu(k) + azmelk ~ 1) + doe(k)
—ar =bro (k- Dlx(k)
+lazm —az - broa(k - DIx(k- 1)
Hbim ~b1aa(k = Dferk) + [bom ~ b1oa(k— Dok — 1)
+[~b; - bros(k— D]u(k~ 1) (2.29)

+Haim

Also using equations (2.7), (2.8) and adaptive control laws,
v(k+1) can be rewritten as follows, where p(b,) = b, sgn(b)).

Wk + 1) = aime(k) + azme(k — 1) + doe(k)

—ay ~bioy(k—1) - p(b)gix(k)v(k+ 1)]x(k)

+lazm — a2 - broa(k - 1) - p(b)gax(k - Wk + Dlx(k- 1)
Hoim =~ bras(k = 1) = p(b1)g3fern (W + DIfern(k)

*lbom — byos(k = 1) — p(b1)guaferb - Dk + Dfer(k— 1)
+[=b2 = bras(k— 1) - p(b1)gsu(k — DWk+ Dluk + 1) (2.30)

+aim

Subtracting equation (2.30) from (2.29) and rearrange it, the
following relation between v ° (k+1) and v(k+1) can be obtained.

- vOke)
Wi+ 1) = 14p(b1)g 1 B2 +gox(h=1)2+g 1 ferr(K)2 48 ferr(k=1)? +g sulle-1)?]

(2.31)

Equation (2.31) makes v(k+1) as an available information at
instant & so as to make the computation of control input u(k)
possible. One may notice from equation (2.31) that the value of
b, is required to compute v(k+), which is unknown, We only
know the sign of b, , not the value of b, itself. A good
approximation can be the value of b,, used in the reference
model. A very similar case has been studied by Bothoux and
Courtiol[19] and the test results show a good control
performance when b, is replaced by 6,,_ .

Figure 1 shows the implementation of adaptive control
mechanism derived in this section, where z ”/ represents a unit
step delay operator.

x
+

@, 3]

' ..

Figure 1. The Adaptive Control System

3. Experimental Verification

Adaptive control system proposed in Section 2 is
experimentally verified in this section. The robot system
involved is a PUMA 560 manipulator controlled by the standard
Unimation controller. An Astek FS6-120A six axis wrist force

sensor is used to measure the contact force. The external force
control loop is closed by LSI-11/73 microcomputer.

3.1 Adaptive Control System

To implement the adaptive control derived in Section 2,
a selection of reference model is required. Consider the
following second order discrete transfer function as a reference
model.

_ _ 04288(z-1) .

H) = e rome G-
This second order reference model is obtained using the
following criteria. (1) A reference model provides the way of
removing force error to the actual system. (2) Thus the step
response of open loop transfer function starts from zero. (3) Also
the steady-state output of it is zero. (4) Finally the steady-state
settling times of a unit step response for the reference model and
the robot system are almost identical. The reference model of
equation (3.1) satisfies all those conditions. Its step response
starts from zero and the final value is zero. The bandwidth of
reference model is about 20 rad/sec, which is almost the same
with that of the robot system itself.

The next step in implementation of adaptive control is
defining the adaptive gains g, in equations (2.20) to (2.24).
Theoretically any positive values of g; can be used. In general, a
fast adaptation can be accomplished by using a higher gain, even
though it usually asks a large input magnitude. For our
application, it should be low enough since it is being used in the
very noisy environment. Otherwise the stability of the overall
system cannot be guaranteed. A good advise in defining the
magnitude of gain is given by Rohrs et al[20], quoted here as
follows. "Keep the adaptation gain small and let the adaptation
proceed slowly." The actual values of g; used in this work is g,
=001, i=1,..,5 Also the initial values of parameters «, (k)
usedare a, (-1)=a, (-1)=a, (-1)= o, (-1)=0.0 and a, (-1)
=1.0.

So far many practical issues as well as some remedies to
resolve the difficulty in implementation of adaptive control to
the actual system have been discussed. But it still requires one
further modification in the adaptive control laws given by
equations (2.20) and (2.24). To explain this, consider the
equation (2.20). As shown in equation (2.20), the parameter o,
(k) is begin updated from its value at instant k-7 by sgn(b, )g,
x(k)v(k+1). Since x(k} and v(k+1) include the noise in it, the
effect of disturbance in the parameter (k) is being accumulated

continuously. This is very unwanted characteristics of an
integration type adaptive control algorithm. To prevent such
noise summing process, the adaptive control law given by
equation (2.20) is modified as follows,

a1 (k) = day (k- 1) +sgn(b)gix(ipv(k + 1) (G2
where 8 is a forgetting factor and has a value of less than 1.
A use of forgetting factor will slow down the adaptation process.
Also its use does not guarantee the perfect model following. But
the slower adaptation process is a lot better than unstable
system. In addition, a perfect model following was not the
objective of using an adaptive control system for this work. Ifa
very small value of & is used, equation (3.2) approaches the
proportional type adaptive control law. In general, there is no
rigorous stability proof for the proportional type adaptive control
system. A use of additional forgetting factor requires further
mathematical analysis. While such analytical work is being
under investigation, modified parameters for all o(k) by the
exactly same form of equation (3.2) are used in this work with
=0.33.

3.2 Experimental work

Two different tasks were selected to test the adaptive
control system. The constant tracking speed v, = 10 mm/sec is
used. Also reference contact force f,, was set by 10 N. Figure



2 shows the force error recorded, while the robot is following a
straight edge. Compared the contour following performance
with that of using only linear compensators (See Figure 9 of
{1]), the performance improvement, when the additional
adaptive control is added, is small. Following straight edge with
linear compensators only already shows a good contour tracking.
Thus there is not much room left for the performance
improvement when the adaptive control is added.

RMS Force Error = 0.7457 N

£ ,]
H
&5 0
$ 2
3
g ]
49 Max. =217 N Min. = -209 N
-8+
-10 T T T
o 10 20 30

Time (sec)
Figure 2. Following a Straight Edge

Figure 3 shows the contact force error recorded when the
adaptive control system is following 2 40 mm radius curvature.
(See Figure 8 of [1].) Compared with the contour tracking
performance of linear system (See Figure 7 of [1].), the adaptive
control tries to put the force error close to zero, which is the
main objective of the use of adaptive control in this work.
Finally the experimentally obtained data shows that the use of
additional adaptive control system improves the contour
following performance in terms of RMS contact force error
about 30 % upon that of the system using linear compensators
only.

RMS Force Error » 1.6652 N

Force Error (N)

Max. = 3.16 N Min. = -4.82 N

T u
20 30

Time (Sec)

Y
o 10 40 50

Figure 3. Following a Curved Contour

4. Discussion and Conclusion

This paper presents an implementation of adaptive force
control with a commercial robot system in two dimensional
contour following task for the surface scanning purpose.

An adaptive control is used in this work as an auxiliary
control system. That is, with the linear control system as a main
control of the contour following system, the adaptive control is
added to improve the performance upon that of using linear
control system only. A model reference adaptive control system
with a signal synthesis approach has been used.

The proposed control system is experimentally verified
with the PUMA 560 robot system. While there are many
difficulties in implementation of adaptive control due to the
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large noise, experimentally obtained data shows that additional
adaptive control system improves the contour tracking
performance about 30 % upon that of using a linear control
system only.

Many practical issues with regard to the application of
adaptive control in the very noisy environment have been
discussed. Some attempts are also made to provide the remedies.
Nevertheless we feel that we only brought the problems rather
than gave any clear answer. More rigorous mathematical
analysis, including a nonlinear effect of the contour following
system, is required and this is currently under investigation.
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