• Title/Summary/Keyword: linear estimator

Search Result 391, Processing Time 0.019 seconds

Variance Estimation for General Weight-Adjusted Estimator (가중치 보정 추정량에 대한 일반적인 분산 추정법 연구)

  • Kim, Jae-Kwang
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.281-290
    • /
    • 2007
  • Linear estimator, a weighted sum of the sample observation, is commonly adopted to estimate the finite population parameters such as population totals in survey sampling. The weight for a sampled unit is often constructed by multiplying the base weight, which is the inverse of the first-order inclusion probability, by an adjustment term that takes into account of the auxiliary information obtained throughout the population. The linear estimator using the weight adjustment is often more efficient than the one using only the bare weight, but its valiance estimation is more complicated. We discuss variance estimation for a general class of weight-adjusted estimator. By identifying that the weight-adjusted estimator can be viewed as a function of estimated nuisance parameters, where the nuisance parameters were used to incorporate the auxiliary information, we derive a linearization of the weight-adjusted estimator using a Taylor expansion. The method proposed here is quite general and can be applied to wide class of the weight-adjusted estimators. Some examples and results from a simulation study are presented.

Discontinuous log-variance function estimation with log-residuals adjusted by an estimator of jump size (점프크기추정량에 의한 수정된 로그잔차를 이용한 불연속 로그분산함수의 추정)

  • Hong, Hyeseon;Huh, Jib
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.259-269
    • /
    • 2017
  • Due to the nonnegativity of variance, most of nonparametric estimations of discontinuous variance function have used the Nadaraya-Watson estimation with residuals. By the modification of Chen et al. (2009) and Yu and Jones (2004), Huh (2014, 2016a) proposed the estimators of the log-variance function instead of the variance function using the local linear estimator which has no boundary effect. Huh (2016b) estimated the variance function using the adjusted squared residuals by the estimated jump size in the discontinuous variance function. In this paper, we propose an estimator of the discontinuous log-variance function using the local linear estimator with the adjusted log-squared residuals by the estimated jump size of log-variance function like Huh (2016b). The numerical work demonstrates the performance of the proposed method with simulated and real examples.

State estimation of stochastic bilinear system (추계 이선형 시스템의 상태추정)

  • 황춘식
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.728-733
    • /
    • 1981
  • Most of real world systems are highly non-linear. But due to difficulties in analyzing and dealing with it, only the linear system theory is well estabilished. Bilinear system where state and control are linear but not linear jointly is introduced. Here shows that optimal state estimation of stochastic bilinear system requirs infinite dimensional filter, thus onesub-optimal estimator for this system is suggested.

  • PDF

An Analytical Design of Feedback Regulator and Signal State Estimator in Discrete Linear Systems (이산 선형시스템에서의 피이드백 조정기 및 신호상태 추정기의 해석적 설계)

  • 고명삼
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.19-30
    • /
    • 1972
  • This paper deals with an analytic design of feedback regulator and signal state estimator in discrete linear systems. On the way of developing the deadbeat regulator, some necessary conditions for control policy have been derived, it is proved that the q periods delay in the control causes q periods delay in the point at which deadbeat response occurs. We have derived some relations such that the eigenvalue of system plant can be arbitrarily changed by the characteristics of minor loop compensator which is introduced in feedback path. And also we show that the signal state estimator which estimates the state of given signal sequence must satisfy some conditions. Theorems and conclusions are described with some simplel nontrivial numerical examples and signal state tracking application problems.

  • PDF

A Second Order Smoother (이차 평활스플라인)

  • 김종태
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.363-376
    • /
    • 1998
  • The linear smoothing spline estimator is modified to remove boundary bias effects. The resulting estimator can be calculated efficiently using an O(n) algorithm that is developed for the computation of fitted values and associated smoothing parameter selection criteria. The asymptotic properties of the estimator are studied for the case of a uniform design. In this case the mean squared error properties of boundary corrected linear smoothing splines are seen to be asymptotically competitive with those for standard second order kernel smoothers.

  • PDF

DETECTION OF OUTLIERS IN WEIGHTED LEAST SQUARES REGRESSION

  • Shon, Bang-Yong;Kim, Guk-Boh
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.501-512
    • /
    • 1997
  • In multiple linear regression model we have presupposed assumptions (independence normality variance homogeneity and so on) on error term. When case weights are given because of variance heterogeneity we can estimate efficiently regression parameter using weighted least squares estimator. Unfortunately this estimator is sen-sitive to outliers like ordinary least squares estimator. Thus in this paper we proposed some statistics for detection of outliers in weighted least squares regression.

Sequential Estimation in Exponential Distribution

  • Park, Sang-Un
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.309-316
    • /
    • 2007
  • In this paper, we decompose the whole likelihood based on grouped data into conditional likelihoods and study the approximate contribution of additional inspection to the efficiency. We also combine the conditional maximum likelihood estimators to construct an approximate maximum likelihood estimator. For an exponential distribution, we see that a large inspection size does not increase the efficiency much if the failure rate is small, and the maximum likelihood estimator can be approximated with a linear function of inspection times.

Weighted Least Absolute Error Estimation of Regression Parameters

  • Song, Moon-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.8 no.1
    • /
    • pp.23-36
    • /
    • 1979
  • In the multiple linear regression model a class of weighted least absolute error estimaters, which minimize the sum of weighted absolute residuals, is proposed. It is shown that the weighted least absolute error estimators with Wilcoxon scores are equivalent to the Koul's Wilcoxon type estimator. Therefore, the asymptotic efficiency of the proposed estimator with Wilcoxon scores relative to the least squares estimator is the same as the Pitman efficiency of the Wilcoxon test relative to the Student's t-test. To find the estimates the iterative weighted least squares method suggested by Schlossmacher is applicable.

  • PDF

Boundary Corrected Smoothing Splines

  • Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.77-88
    • /
    • 1998
  • Smoothing spline estimators are modified to remove boundary bias effects using the technique proposed in Eubank and Speckman (1991). An O(n) algorithm is developed for the computation of the resulting estimator as well as associated generalized cross-validation criteria, etc. The asymptotic properties of the estimator are studied for the case of a linear smoothing spline and the upper bound for the average mean squared error of the estimator given in Eubank and Speckman (1991) is shown to be asymptotically sharp in this case.

  • PDF