• 제목/요약/키워드: linear error model

검색결과 947건 처리시간 0.03초

Power Analysis for Tests Adjusted for Measurement Error

  • 허순영
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.1-14
    • /
    • 2003
  • In man cases, the measurement error variances may be functions of the unknown true values or related covariate. In some cases, the measurement error variances increase in proportion to the value of predictor. This paper develops estimators of the parameters of a linear measurement error variance function under stratified multistage random sampling design and additional conditions. Also, this paper evaluates and compares the power of an asymptotically unbiased test with that of an asymptotically biased test. The proposed method are applied to blood sample measurements from the U.S. Third National Health and Nutrition Examination Survey(NHANES III)

  • PDF

Partially linear multivariate regression in the presence of measurement error

  • Yalaz, Secil;Tez, Mujgan
    • Communications for Statistical Applications and Methods
    • /
    • 제27권5호
    • /
    • pp.511-521
    • /
    • 2020
  • In this paper, a partially linear multivariate model with error in the explanatory variable of the nonparametric part, and an m dimensional response variable is considered. Using the uniform consistency results found for the estimator of the nonparametric part, we derive an estimator of the parametric part. The dependence of the convergence rates on the errors distributions is examined and demonstrated that proposed estimator is asymptotically normal. In main results, both ordinary and super smooth error distributions are considered. Moreover, the derived estimators are applied to the economic behaviors of consumers. Our method handles contaminated data is founded more effectively than the semiparametric method ignores measurement errors.

A Study on the Development of Fuzzy Linear Regression I

  • Kim, Hakyun
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제4권
    • /
    • pp.27-39
    • /
    • 1995
  • This study tests the fuzzy linear regression model to see if there is a performance difference between it and the classical linear regression model. These results show that FLR was better as f forecasting technique when compared with CLR. Another important find in the test of the two different regression methods is that they generate two different predicted P/E ratios from expected value test, variance test and error test of two different regressions, though we can not see a significant difference between two regression models doing test in error measurements (GMRAE, MAPE, MSE, MAD). So, in this financial setting we can conclude that FLR is not superior to CLR, comparing and testing between the t재 different regression models. However, FLR is better than CLR in the error measurements.

  • PDF

CNC 밀링머신 이송장치의 오차유형 및 정상상태 오차해석에 의한 제어기 설계 (Controller Design by Error Shape and Steady-State Error Analysis for a Feed Drive System in CNC Milling Machine)

  • 이건복;길형균
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.52-60
    • /
    • 2005
  • This paper deals with the position control fur a feed drive system in CNC milling machine, which utilizes a modified error signal for the elimination of steady-state error. A linear time-invariant (LTI) system has consistent properties in response to standard test signal inputs. Those also appear in an error curve acquired from the response. From such properties, constructed is an error model for the position control of the feed drive. And then added is the output of the error model to the current error signal. Consequently the resulting proportional control system brings performance improvement in view of the steady-state error. The effectiveness of the proposed scheme is confirmed through simulations and experiments.

Note on Use of $R^2$ for No-intercept Model

  • Do, Jong-Doo;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.661-668
    • /
    • 2006
  • There have been some controversies on the use of the coefficient of determination for linear no-intercept model. One definition of the coefficient of determination, $R^2={\sum}\;{\widehat{y^2}}\;/\;{\sum}\;y^2$, is being widely accepted only for linear no-intercept models though Kvalseth (1985) demonstrated some possible pitfalls in using such $R^2$. Main objective of this note is to report that $R^2$ is not a desirable measure of fit for the no-intercept linear model. In fact it is found that mean square error(MSE) could replace $R^2$ efficiently in most cases where selection of no-intercept model is at issue.

  • PDF

ADAPTIVE CHANDRASEKHAR FILLTER FOR LINEAR DISCRETE-TIME STATIONALY STOCHASTIC SYSTEMS

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.1041-1044
    • /
    • 1988
  • This paper considers the design problem of adaptive filters based an the state-space models for linear discrete-time stationary stochastic signal processes. The adaptive state estimator consists of both the predictor and the sequential prediction error estimator. The discrete Chandrasakhar filter developed by author is employed as the predictor and the nonlinear least-squares estimator is used as the sequential prediction error estimator. Two models are presented for calculating the parameter sensitivity functions in the adaptive filter. One is the exact model called the linear innovations model and the other is the simplified model obtained by neglecting the sensitivities of the Chandrasekhar X and Y functions with respect to the unknown parameters in the exact model.

  • PDF

비선형 제어 시스템의 샘플치 퍼지 추적 제어 (Sampled-data Fuzzy Tracking Control of Nonlinear Control Systems)

  • 김한솔;박진배;주영훈
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.159-164
    • /
    • 2017
  • In this paper, we propose a method of designing the sampled-data tracking controller for nonlinear systems expressed by the Takagi-Sugeno (T-S) fuzzy model. A sufficient condition that asymptotically stabilizes the state error between the linear reference model and the T-S fuzzy model is derived in terms of linear matrix inequalities. To this end, error dynamics are constructed, and the exact discretization method and the Lyapunov stability theory are employed in this paper. Finally, we validate the proposed method through the simulation example.

퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링 (Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy)

  • 이재하;양승한
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF

유역특성에 따른 탱크모형 매개변수의 변화 (An Evaluatiou of Parameter Variations for a Linear Reservoir (TANK) Model with Watershed Characteristics)

  • 김현영;박승우
    • 한국농공학회지
    • /
    • 제28권2호
    • /
    • pp.42-52
    • /
    • 1986
  • This study involves the estimation of optimal ranges of parameters for a linear watershed model. A well-known TANK model was chosen and a linear combination of four tanks assumed. The model was used to simulate daily streamflow for six watersheds of different sizes and by a trial-and-error approach a set of optimal parameters defined. The parameters were related to watershed sizes and land use conditions. Optimal parameters for ungaged conditions were defined from the relationships; daily streamflow simulated and compared to the observed date. The simulated results were in a general agreement with the data.

  • PDF

LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage

  • Horng, Rong-Hwang;Lin, Li-Ren;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find that the new structure gains advantage over the non-friction compensation system on the performance of the compensator in both regions. The proposed compensator is evaluated and compared experimentally with an uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper. The experimental results show the improvement on the maximum velocity error and the root mean square tracking error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-reverse region from 48% to 65% and from 79% to 90% respectively.