• Title/Summary/Keyword: linear elastic analysis

Search Result 760, Processing Time 0.034 seconds

In-plane Vibration Analysis of Rotating Cantilever Curved Beams

  • Zhang, Guang-Hui;Liu, Zhan Sheng;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1045-1050
    • /
    • 2007
  • Equations of motion of rotating cantilever curved beams are derived based on a dynamic modeling method developed in this paper. The Kane's method is employed to derive the equations of motion. Different from the classical linear modeling method which employs two cylindrical deformation variables, the present modeling method employs a non-cylindrical variable along with a cylindrical variable to describe the elastic deformation. The derived equations (governing the stretching and the bending motions) are coupled but linear. So they can be directly used for the vibration analysis. The coupling effect between the stretching and the bending motions which could not be considered in the conventional modeling method is considered in this modeling method. The natural frequencies of the rotating curved beams versus the rotating speed are calculated for various radii of curvature and hub radius ratios.

  • PDF

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams (전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬)

  • 김남일;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Analysis of Linear-type Ultrasonic Motor Using A Finite Element Method (유한요소해석 프로그램에 의한 리니어 초음파 모터의 변위량 해석)

  • 이동준;임태빈;강성택;김영욱;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • This paper is a study on a linear ultrasonic motor with a first longitudinal$(L_1)$ and fourth bending $(B_4)$ double-mode rectangular plate. The stator vibrator is composed of an elastic material plate and of a piezo-ceramic element having a motion by electrical excitation. Each strain vector differs by $90^{\circ}$ generate travelling wave with the elliptical displacement motion of a point on the surface. To magnify displacement of longitudinal direction in elliptical displacement motion, the motor has a mechanism of the.displacement enlargement. In this paper, the vibration shape of the stator is simulated using the finite element method. A detailed model considered of the piezoelectric effect and of the exact geometry of the stator is used to calculate the displacement. The position of displacement mechanism is decided by the maximum displacement.

  • PDF

Effect of PSD Function on Linear Response and Inelastic Response of Single Degree of Freedom System (단자유도 시스템의 선형응답과 비탄성응답에 미치는 PSD함수의 영향)

  • Choi, Dong-Ho;Lee, Sang-Hoon;Kim, Yong-Sik;Koh, Jung-Hoon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.257-259
    • /
    • 2008
  • Acceleration time history (ATH) used in the seismic analysis should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. Even though design regulations require the ATH used in seismic analysis to meet a target PSD function, the reason that ATHs meet to a target PSD function is not described. Thus, artificial ATHs for high PSD function and artificial ATHs for low PSD function are generated. And then elastic and inelastic single-degree-of-freedom (SDOF) systems are loaded with these artificial time histories as the earthquake load. As a result, linear response and inelastic response of SDOF systems are affected by PSD function.

  • PDF

Numerical methods for the dynamic analysis of masonry structures

  • Degl'Innocenti, Silvia;Padovani, Cristina;Pasquinelli, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.107-130
    • /
    • 2006
  • The paper deals with the numerical solution of the dynamic problem of masonry structures. Masonry is modelled as a non-linear elastic material with zero tensile strength and infinite compressive strength. Due to the non-linearity of the adopted constitutive equation, the equations of the motion must be integrated directly. In particular, we apply the Newmark or the Hilber-Hughes-Taylor methods implemented in code NOSA to perform the time integration of the system of ordinary differential equations obtained from discretising the structure into finite elements. Moreover, with the aim of evaluating the effectiveness of these two methods, some dynamic problems, whose explicit solutions are known, have been solved numerically. Comparisons between the exact solutions and the corresponding approximate solutions obtained via the Newmark and Hilber-Hughes-Taylor methods show that in the cases under consideration both numerical methods yield satisfactory results.

Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.399-422
    • /
    • 2018
  • Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by using energy method and Hamilton principle to describe the translational and shear deformation's behavior of the system. Governing equations of motion are extracted by supplementing Eringen's nonlocal theory. Finally vibration behavior of system especially the frequency of system is developed by implementation Semi-analytical differential transformed method (DTM). The results are validated in the researches that have been done in the past and shows good agreement with them.

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions (분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Strength Evaluation on Sectional Members of Prefabricated Precast Concrete Arch with Reinforced Joint (보강된 이음부가 적용된 조립식 프리캐스트 콘크리트 아치의 단면 강도 평가)

  • Joo, Sanghoon;Chung, Chulhun;Bae, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1363-1372
    • /
    • 2014
  • In the previous study, the structural performance of proposed precast concrete arch with reinforced joint was evaluated by structural experiment. In this paper, finite element analysis considering both material and contact nonlinearity was carried out on the specimens of the previous study. Based on the result of analysis and experiment, friction coefficient between concrete blocks was determined. To evaluate the strength of sectional member, elastic analysis was carried out on the arch using linear elastic analysis program. The section force was compared with the nominal strength of arch section. It was concluded that the maximum load of all the specimens exceed the nominal strength of arch section. Those results of the strength evaluation were similar to the results of structural experiments. Therefore, it is concluded that the elastic analysis and ultimate strength model can effectively evaluate the strength for the proposed precast concrete arch composed of concrete blocks and reinforced joint in design.

Failure analysis of prestressing steel wires

  • Toribio, J.;Valiente, A.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.411-426
    • /
    • 2001
  • This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.