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Recent Developments in Multibody Dynamics

Werner Schiehlen”
Institute B of Mechanics, University of Stuttgart, 70550 Stutigart, Germany

Muitibody system dynamics is based on classical mechanics and its engineering applications
originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody
system dynamics is characterized by algorithms or formalisms, respectively, ready for computer
implementation. As a result simulation and animation are most convenient. Recent develop-
ments in multibody dynamics are identified as elastic or flexible systems, respectively, contact
and impact problems, and actively controlled systems. Based on the history and recent activities
in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis
are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, non-
linear dynamics approaches and simulation techniques. Applications are shown from low fre-
quency vehicles dynamics including comfort and safety requirements to high frequency structural
vibrations generating noise and sound, and from controlled limit cycles of mechanisms to perio-
dic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in

particular as multibody dynamics is considered as the basis of mechatronics.
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1. History and Recent Activities

The roots of multibody dynamics date back to
the origins of analytical mechanics starting with
the Principia of Newton (1687), Corporum Rigi-
darum by Euler (1776) and Mecanique Analy-
tique by Lagrange (1788). Even more important
for the computational aspects of multibody dyna-
mics are the contributions of D’Alembert (1743)
in his Traité de Dynamique, Jourdain (1909)
with his Analogue at Gauss’ Principle and the
work of Kane and Levinson (1985). Multibody
dynamics was also promoted at the beginning of
the 20" century by the theory of gyroscopes, see
e.g. Grammel (1920), and mechanism theory by
the early work of Wittenbauer (1923). During
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the middle of the last century spacecraft and
biomechanics pushed the development of multi-
body dynamics as documented by Roberson and
Wittenburg (1967) and Huston and Passerello
(1971).

Multibody dynamics as a new branch of mec-
hanics was set up in 1977 by a IUTAM Sym-
posium chaired by Magnus (1978). Twenty years
later MULTIBODY SYSTEM DYNAMICS was
established as the first scientific journal fully de-
voted to multibody dynamics. After many collo
quia, symposia and conferences in Europe and
North America, the First Asian Conference on
Muitibody Dynamics took place in 2002. And in
2003 an ASME Technical Committee on Multi-
body Systems and Nonlinear Dynamics was form-
ed with the task to organize biannual conferences
starting in 2005.

Recent research topics may be listed as follows.

(1) Datamodels from CAD (standardization,
coupling)
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Classical Mechanics

Fig. 1 Focus of multibody systems

(2) Parameter identification
(3) Real time simulation
(4) Contact and impact problems (Impact)
(5) Extension to electronics and mechatronics
(Control)
(6) Dynamic strength analysis (Flexibility)
(7) Optimization of design and control
(8) Integration codes
(9) Challenging applications in biomechanics,
robotics and vehicle dynamics.

In particular, elastic or flexible multibody sys-
tems, respectively, contact and impact problems
and actively controlled mechatronic systems rep-
resent key issues for researchers worldwide. The
focus of multibody systems is shown in Figure 1.

2. Fundamental Dynamics

In this section the essential steps for generation
the equations of motion in multibody dynamics
will be summarized.

2.1 Mechanical modelling

First of all the engineering or natural system
has to be replaced by the elements of the multi-
body system approach : rigid and/or flexible bo-
dies, joints, gravity, springs, dampers and position
and/or force actuators The system constrained by
bearings and joints is disassembled as free body
system using an appropriate number of inertial,
moving reference and body fixed frames for the
mathematical description.

2.2 Kinematics

A system of p rigid bodies holds f=6p degrees
of freedom characterized by translation vectors
and rotation tensors as

Y‘i:[Vil Y2 Vﬁ}r, Si(a’i,, Bi, ?’i), le“)ﬁ (1)

Thus, the position vector x of the free system can
be written as

x=[ry 7z ns ra - apBerp)” (2)
The system’s position remains as
ri=ri(x), S$;=8.(x) (3)

Assembling the system by ¢ holonomic, rheo-
nomic constraints reduces the number of degrees
of freedom to f=6p—q. The corresponding con-
straint equations may be written in explicit or
implicit form, respectively, as

x=x(y, t) or @(x, t)=0 (4)

where the position vector » summarizes the f
generalized coordinates of the holonomic system

y() = 2 33 ye]7 (5)
Then, for the system’s position it remains
ri=riy, t), S:=8:(y. t) (6)

By differentiation the translational and rotational

. velocity vectors are found

g or; or;
:JTl<y, t)y_f'l;z(y, t)
ST ayT T ot (8)

=Jr(y, ) ¥+ a:(y, t)

where 8§ means a vector of infinitesimal rotations
following from the corresponding rotation tensor,
see, e.g., Schiehlen (1997). Further, the Jacobian
matrices Jr: and Jg; for translation and rotation
are defined by Eqs. (7) and (8).

The system may be subject to additional » non-
holonomic constraints which do not affect the
f=6p—q positional degrees of freedom. But they
reduce the velocity dependent degrees of free-
dom to g=f—»=6p—qg—r. The corresponding
constraint equations can be written explicitly or
implicitly, too,

y=3{(y, z, t) or T(y, », £)=0 (9)
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where the g generalized velocities are summa-
rized by the vector

2z =[z1 2 23 2] (10)

For the system’s translational and rotational ve-
locities it follows from Egs. (7) to (9)

vi=vi(y, z, 1) and @i=w;(p, z, 1) (11)

By differentiation the acceleration vectors are ob-
tained, e.g., the translational acceleration as

ov: ., ovi | dv;
= z+ +=

0zT ayT  at (12)
:LTI(y, Za t>2+;z(y, za t)

a;

A similar equation yields for the rotational acc-
eleration. The Jacobian matrices L are related to
the generalized velocities, for translations as well
as for rotations.

2.3 Newton-Euler Equations

Newton’s equations and Euler’s equations are
based on the velocities and accelerations from
Section 2.2 as well as on the applied forces and
torques, and the constraint forces and torques
acting on all the bodies. The reactions or con-
straint forces and torques, respectively, can be
reduced to a minimal number of generalized con-
straint forces also known as Lagrange’s multi-
pliers. In matrix notation the following equa-
tions are obtained, see also Schiehlen (1997).

Free body system kinematics and holonomic

constraint forces :
Mi+q(x, %, t)=q°(x, X, 1) + Qg (13)
Q=—o1

Holonomic system kinematics and constraints :
MIy+a(y, . H=a(y, y. ) +Qg (19)

Nonholonomic system kinematics and con-

straints :
ML:+q(y, z, ) =a°(y, z, ) + Qg (15)

On the left hand side of Egs. (13) to (15) the
inertia forces appear characterized by the inertia
matrix M, the global Jacobian matrices J, L
and the vector q° of the Coriolis forces. On the
right hand side the vector g° of the applied forces

and the constraint forces composed by a global
distribution matrix @ and the vector of the
generalized constraint forces & are found.

Each of the Egs. (13) to (15) represents 6p
scalar equations. However, the number of un-
knowns is different. In Eq. (13) there are 6p+g
unknowns resulting from the vectors x and g.
In Eq. (14) the number of unknowns is exactly
6p=f +g by the vectors y and g, while in Eq.
(15) the number of unknowns is 12p—g due to
the additional velocity vector z and an extended
constraint vector &. Obviously, the Newton-Euler
equations have to be supplemented for the simu-
lation of motion.

2.4 Equations of motion

The equations of motion are complete sets of
equations to be solved by vibration analysis and/
or numerical integration. There are two approa-
ches used resulting in differential-algebraic equa-
tions (DAE) or ordinary differential equations
(ODE), respectively.

For the DAE approach the implicit constraint
equations (4) are differentiated twice and added
to the Newton-Euler equations (13) resulting in

{M dﬂ [x}z[ a°—q° } (16)
Q. 0 &g —0:— Dyx

Egs. (16) are numerically unstable due to a dou-
ble zero eigenvalue originating from the differen-
tiation of the constraints. During the last decade
great progress was achieved in the stabilization
of the solutions of Egs. (16) well documented by
Eich-Soellner and Fuhrer (1998).

The ODE approach is based on the elimination
of the constraint forces using the orthogonality
of generalized motions and constraints, J'Q=
0, also known as D’Alembert’s principle for
holonomic systems. Then, it remains a minimal
number of equations

My, )y+k(y 3 t)=qy 3. t) (U7)

The orthogonality may also be used for non-
holonomic systems, L*Q =0, corresponding to
Jourdain’s principle and Kane’s equations. How-
ever, the explicit form of the nonholonomic
constsraints (9) has to be added,
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y=v(y, 2z, t)

(18)
My, z, )2+Ek(y, z, t)=qy, z, t)

Egs. (17) and (18) can now be solved by any
standard time integration code.

The equations presented can also be extended
to flexible bodies. For the analysis of small struc-
tural vibration a floating frame of reference is
used while for large deformations the absolute
nodal coordinate formulation turned out to be
very efficient. For more details see, ¢.g., Shabana
(1998, 2003).

3. Recursive Algorithms

For time integration of holonomic systems the
mass matrix in Eqgs. (16) or (17), respectively,
has to be inverted what is numerically costly for
systems with many degrees of freedom,

&) =My, ) gy, 3, t) —k(y, y, )] (19)

Recursive algorithms avoid this matrix inver-
sion. The fundamental requirement, however, is
a chain or tree topology of the multibody system
as shown in Figure 2. Loop topologies are not
included. Contributions on recursive algorithms
are due, e.g., to Hollerbach (1980), Bae and Haug
(1987), Brandl, Johanni and Otter (1988), Schie-
hlen (1991).

3.1 Kinematics
Recursive kinematics use the relative motion
between two neighboring bodies and the related

Chain
Topology of multibody systems

Loop Tree
Fig. 2

constraints as shown in Figure 3. The absolute
translational and rotational velocity vector w;
of body 7 is related to the absolute velocity vec-
tor Wi, of body —1 and the generalized coor-
dinates y; of the joint 7 between this two bodies.
It yields

Voi! il E —Forvo|| Vo si|Ir|
|:wi:|_s {0 E “:C():‘4:|+S |:J1?i:| Vi (20)

N’ | S ——1

w; C: Wit J:

Using the fundamentals of relative motion of
rigid bodies, it remains for the absolute accelera-
tion

b:=Cibis+J:y:+ B:(¥:, wi-1) (21

where the vector b; summarizes the translational
and rotational accelerations of body 7 as well.

For the total system one gets for the absolute
acceleration in matrix notation

b=Cb+Jy+8 (22)

where the geometry matrix C is a lower block-
sub-diagonal matrix and the Jacobian J is a
block-diagonal matrix as follows

0090 -0 Jio 0 0

C:0 0 -0 0.0 0
C=|0C 0 - 0,J=00J - 0](23

R DL T e

000CO 000 0Jp

From Eq. (23) it follows the non-recursive form
of the absolute accelerations as

b=(E—C) 'Jy+8 (24)

Fig. 3 Three-body system with two joints
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where the global Jabobian matrix J is found
again, see Section 2.2,

Ju 0 0 -0
GhL J: 0 -0
J= (E—C) =1 CCJ, CoJ: J5 -+ 0 (25)

* * % - J,
Due to the chain topology the global Jacobian
matrix is a lower triangular matrix.

3.2 Newton-Euler equations

Newton’s and Euler’s equations are now writ-
ten for body ¢ in its body fixed frame at the joint
position O; using the absolute accelerations and
the external forces @ acting on the body with
holonomic constraints :

{ mE mg‘f”&a]{am} + [mi@iwirowi] _ [ Ji }
mitoc: o a: @:iloiw; lo:] (26)

—_— —
M.=const b: k; a:
Moreover, the external forces are composed of ap-
plied forces ¢!¥ and constraints forces @i where
the generalized constraint forces of the joint 7 and
joint —1 appear :

a:=q:"+q{”

(T} T (27)
¢ =0Q.g— Cl1Qi18n

3.3 Equations of motion

For the total system a set of 18 scalar equations
remains from Egs. (22), (26) and (27)

b=Jy+8 (28)
Mo+ k=q®+q" (29)
d"=(E—C)"Qg=Qg (30)

with 18 unknowns in the vectors b, y, ¢, &.

Now Eqgs. (28) and (30) are inserted in Eq.
(29) and the global orthogonality JTQ=0 is
used again resulting in Eq. (17). The mass matrix
is completely full, again, and the vector k de-
pends not only on the generalized velocities but
also on the absolute velocities, '

RGO GIG) G JIG UGG HGM,
M=|  JFUL+GHGIGlL KMt GHG: KGM| (31)
MGG TG, /A

and
k=k(y, ¥, w) (32)

However, the mass matrix shows now a charac-
teristic structure which can be used for a Gauss
transformation,

34 Recursion
There are three steps required to obtain the
generalized accelerations.

(1) Forward recursion to get the absolute mo-
tion starting with 7=1.

(2) Backward recursion using a Gauss trans-
formation starti.ng with 7/=p. As a result the
system

My+Ek=g (33)
is obtained where A is a lower triangular matrix

JEMLT, 0 0
fztﬁzczﬁ fztﬁzfz (l
JECiCaly JEMLCof, Jieg,| (%

M:‘—l:Mi—l“}'Cf(Mi“MJi(]z‘tMJi)_lffMi) C;

M=

the block elements of which follow from the re-
cursion formula in Eq. (34).

(3) Forward recursion for the generalized acc-
elearations starting with 7=1.

The recursion requires some computational
overhead. Therefore, the recursive algorithms are
more efficient than the matrix inversion for more
than »p=8—10 bodies.

There are also some extensions of the recursive
approach to loop topologies, see Bae and Haug
(1987) and Saha and Schiehlen (2001).

4. Dynamic Analysis

The dynamical analysis of multibody systems
is closely related to vibration theory. For engi-
neering applications mechanical vibrations of
holonomic, rheonomic systems are most impor-
tant. The dynamical phenomena are classified
according to the equations of nonlinear and line-
ar motion.

Starting with Eqgs. (17), nonlinear time-variant
mechanical systems, even with f=1 degree of
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freedom, may show chaotic vibrations. For small
motions Eqs. (17) can be linearized resulting in

M) y+P(t)y+Q(t) y=h(t) (35)

This system may feature parametrically excited
vibrations due to the time-varying, often periodic
matrices. In the case of time-invariant matrices
with symmetric and skew-symmetric characteris-
tics one gets

My+(D+G)y+(K+N)y=h(t) (36)

a system which performs forced vibrations due
to the external excitation on the right hand side.
In the case of h(#)=0 only free vibrations re-
main. Furthermore, if the damping matrix D, the
gyroscopic matrix (&, and the circulatory matrix
N are missing, a conservative system

My+Ky=0 (37)

with free undamped vibrations is found.

4.1 Linear vibration analysis

The special structure of Egs. (36) and (37)
simplifies the analysis. Marginal stability of Egs.
(37) is guaranteed if the stiffness matrix K is
positive definitive. Free damped vibrations due
to Egs. (36) with G=N=0 are asymptotically
stable if both, the stiffness matrix K is positive
definite and the damping matrix I is positive
definite or pervasively positive semidefinite, re-
spectively, see Ref. [16]. Moreover, Egs. (36) is
asymptotically stable is all eigenvalues have a
negative real part.

The general solution of Eqgs. (37) reads as

y (1) =T(8) yot+ W (£) o (38)

where the transition matrices @;(#), ¥:(¢) are
found from a real eigenvalue analysis of dimen-
sion f. The general solution of Eq. (36) is more
easily written in the state space with the state
vector x(#) summarizing the system’s state given
by the generalized coordinates and their first time
derivatives as

v
x“)_[y-u)] (39)

Then, the general solution reads simply

x(£)=@(t) xo (40)

where the state transition matrix @(¢) follows
from a complex eigenvalue problem of dimension
2f.

Matrix methods for linear systems with har-
monic excitation h(¢) lead to the concept of
frequency response matrices while random ex-
citation processes require spectral density ma-
trices or covariance matrices, respectively. In the
case of Eqs. (35) with periodically time-varying
coefficients Floquet’s theory allows closed form
solutions, see Muller and Schiehlen (1985).

4.2 Nonlinear vibration analysis
Chaotic vibrations can be analyzed by time
integration only resulting in a solution

y(t)=y(t; 3. ») (41)

which is very sensitive to the initial conditions.
Powerful characteristics of chaotic vibrations are
the phase portrait, the power spectral density, the
Ljapunov exponents and the dimensions. In ad-
dition to the chaotic vibrations periodic motions
may also be found depending on the parameters
of the system.

As an example some results of Bestle (1988) are
presented here for the Duffing oscillator. Para-
meter Set ¢ allows a periodic motion, often called
a limit cycle, while Set d represents chaotic be-
haviour resulting in a strange attractor, Figure 4.
The Ljapunov exponents for Set g are computed
as 01=0, 02=—0.10, g3=—0.10 what means a
periodic motion, for Set d on gets 61=0.17, g2=
0, 05=—0.37. The positive Ljapunov exponent
identifies a chaotic motion. The same behaviour
is found from the dimension, Set @ results in
Dy=1, and for Set d one gets D;=2.46.

A chaotic multibody system is represented by
the chaos pendulum consisting of p=3 bodies
with f=3 degrees of freedom, see Schiehlen
(1999).

5. Vehicle Vibrations and Control
Vehicle dynamics is a major application field

of multibody dynamics. The corresponding soft-
ware tools have been highlighted by Kortum,
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Fig. 5 Vehicle convoy as simulation and control
design model

Arnold and Schiehlen (2001). These tools are
most successfully used for detailed models re-
presenting the vehicle motion by simulation. For
the control design such models are too complex,
additional more simple models are helpful.

As an example the lateral dynamics of a vehicle
convoy with the second vehicle following auton-
omously the leading vehicle is considered, Figure
5. The simulation model consists of p=19 bodies
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with /=19 degrees of freedom, McPherson front
wheel strut, semi~trailing rear wheel suspension,
Pacejka’s magic formula tire model and driver
models by Legouis and Donges. The control
design model is restricted to a plane motion of
lateral and yaw dynamics, the two tires of each
axis are replaced by one tire in the middle of the
axis (bicycle model), a linear tire model is used
and the longitudinal velocity is constant. More
details of the models, the corresponding equa-
tions and simulation results are available from
Schiehlen and Petersen (1997).

6. Structural
Vibrations and Contact

Structural vibrations occur often after colli-
sions representing dynamical contact modelled as
impacts between rigid and/or elastic bodies, re-
spectively. Contact can be considered as a mul-
tiscale problem as shown in Schiehlen and Hu
(2000) . On the fast time scale the energy loss can
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be computed by an elastodynamic or finite ele-
ment model, respectively. Then, from the mo-
mentum balance the coefficient of restitution is
found and fed back to the multibody dynamics
analysis. Using a linear motion of the two colli-
ding bodies with masses »u, i, it yields in the
compression and the restitution phase

Ape=mi(vi —v), Ape=mz(v—17) (42)

Apr=m(v—2), Apr=ma(vi —v)
Poisson’s law of momentum reads as

AP:APc+APr=ADc(1+6) (43)
From Egs. (42) and (43) it follows the coefficient
of restitution as

_ (ml‘l‘WLz)AD
mumz (VT —v3)

1 (44)

The coefficient of restitution depends on the
shape of the bodies, their material and their rela-
tive velocity. Computational and experimental
results are shown in Figure 6 for rods, plates,
balls and beams made from aluminium.

The structural vibrations superimposed to the
rigid body motion are shown in Figure 7. For
more details see Schiehlen and Seifried (2003).

7. Mechanisms and Biped Walkers

Robots and manufacturing systems as well as
walking devices are characterized by mechanisms

021

Rod impact

Pty

Time [s]

with some or all mechanical degrees of freedom
controlled resulting in prescribed motions or
rheonomic constraints, respectively.

These motions are usually periodic vibrations
and due to the control effort for accelerating and
decelerating of the bodies a considerable amount
of energy may be consumed. By using storage
springs, the motion may be adjusted to the limit
cycle of periodic nonlinear vibrations.

The first example is a robot arm with f=2
degrees of freedom and the task of a horizontal
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Fig. 6 Coefficient of restitution for bodies of differ-
ent shape
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Fig. 7 Slow time scale simulation and related sound generation
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motion featuring a limit cycle, Figure 8. The
storage springs with stiffness c¢i, ¢z support the
motion in a natural way reducing the energy
consumption as shown in Guse and Schiehlen
(2002). Reduction of the energy consumption
may reach more than 90%.

This principle can also be applied to walking
machines. Passive walking devices are very effi-
cient just powered by a small slope of the ground.
In this case the potential energy is stored in the
gravitational field by the vertical vibrations of the
machine’s centre of mass. The passive motion is
then used as prescribed motion of a fully active
walking machine, see Figure 9. The equation of
motion of the active machine with f =9 degrees
of freedom reads as

My, )y+k(y, 3, 1)

=q(y, », ) +W(y, t)g+Bu (43)

where W (y, t) & represent the reaction forces

Rotating crank  x(f) = L+ R coswt ,

Oscillating crank  x(t) = a + b coswr

¥ =0
between a=30° and a=150°

a = L coslarcsin{ ..£)] ,
c/;[arcsm( ’ZL)] y(t) - 0
b=RY
z
Fig. 8 Robot arm with two prescribed horizontal

motions

Fig. 9 Actively controlled biped walking machine

due to the feet contact points and the locking
knee, B is the control input matrix and u=/[u
w1 Uz Us Us us)” means the control input vector.
As shown in Gruber and Schiehlen (2002) the
actively controlled biped model is as efficient as
human walking what is superior to walking ma-
chine operating for comfort reasons without ver-
tical vibrations of the centre of mass.

8. Conclusions

Multibody dynamics is an excellent foundation
for multivariable vibration analysis and sophisti-
cated control design. Recent research activities are
devoted to large deformations in flexible multi-
body systems, to contact and impact problems re-
quiring multi-time-scale modeling and all kinds
of actively controlled mechanical systems often
denoted as mechatronic systems.
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