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Abstract 

Equations of motion of rotating cantilever curved beams are derived based on a dynamic modeling method developed in 
this paper. The Kane’s method is employed to derive the equations of motion. Different from the classical linear modeling 
method which employs two cylindrical deformation variables, the present modeling method employs a non-cylindrical 
variable along with a cylindrical variable to describe the elastic deformation. The derived equations (governing the 
stretching and the bending motions) are coupled but linear. So they can be directly used for the vibration analysis. 
The coupling effect between the stretching and the bending motions which could not be considered in the conventional 
modeling method is considered in this modeling method. The natural frequencies of the rotating curved beams versus the 
rotating speed are calculated for various radii of curvature and hub radius ratios. 

Symbols 
 
ρ :  mass per unit length of beam 

ii qq 21 , : generalized coordinates  
Pvr :  velocity of generic point P  
Par :  acceleration of generic point P   
Ovr :  velocity of point O  fixed to the rigid hub  
Aωr :  angular velocity of the rigid hub  

rr  :  vector from O  to P  
ur  :  vector from P  to P′  
r  :  radius of the rigid hub 

1. Introduction 

Curved beam structures can be found in many 
aerospace and mechanical engineering examples such as 
spacecraft structures, robots, turbine blades, and 
helicopter blades. For proper designs of such systems, 
their modal characteristics such as natural frequencies 
should be accurately identified. Although most of the 
previous studies dealt with straight beams, a few 
researchers investigated the modal characteristics of 
curved beams. Compared with the modal characteristics of 
straight beams, those of curved beams show clearly 

different characteristics that are originated from the 
curvature of curved beams. Furthermore, the modal 
characteristics of rotating curved beams are significantly 
different from those of non-rotating curved beams. The 
variation results from the stretching caused by centrifugal 
inertia force due to rotational motion. The stretching as 
well as the curvature variation causes the increment of 
the bending stiffness of the structures, which will 
naturally result in the variation of natural frequencies. 

An analytical method to calculate the natural 
frequency of a rotating beam was originally introduced 
by Southwell and Gough[1]. Based on the Rayleigh 
energy method, they proposed an equation to calculate 
the natural frequencies of rotating cantilever beams. To 
obtain more accurate results, Schilhansl[2] derived a 
linear partial differential equation which governs the 
bending vibration of a rotating beam. Putter and 
Manor[3] applied the assumed mode approximation 
method for the modal analysis of a rotating beam. More 
recently, Kane et al. [4] introduced a comprehensive 
theory to deal with the dynamics of a beam attached to a 
base. A new variable, namely the stretch along the elastic 
axis, is used to account for geometric nonlinearity 
appropriately. Based on the method, the effect of Coriolis 
coupling on the modal characteristics of a rotating beam 
was successfully investigated by Yoo and Shin[5]. 

The out-of-plane and the in-plane motions of a 
curved beam are coupled in general. However, if the 
cross section of the curved beam is symmetric and the 
thickness of the beam is small in comparison with the 
radius of the beam, the out-of-plane and the in-plane 
motion can be decoupled[6, 7]. The Rayleigh-Ritz method 
could be used to obtain the natural frequencies of inextensional [8, 
9] and extensional [10, 11] in-plane vibrations of ring segments. 
Upper and lower bounds for the fundamental frequency of in-
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plane transverse vibration of cantilever curved beam were 
determined by Laura[12]. Laura derived the fundamental 
natural frequency equation by means of the Rayleigh-Ritz 
method. Three curved beam elements were investigated to 
solve the problem of radial vibrations of curved beams [13]. 

The purpose of this paper is to develop a modeling 
method to investigate the modal characteristics of a rotating 
cantilever curved beams. For the modeling method a hybrid 
set of deformation variables are employed. The use of 
hybrid deformation variables, which distinguishes the present 
modeling method from other conventional method, is the key 
ingredient to derive accurate linear equations of motion. The 
linear equations provide proper motion induced stiffness variation. 
Moreover, the coupling effect between the stretching and the 
bending motion could be considered in the equations. The 
effects of the curvature along with the hub radius and the 
rotating speed on the modal characteristics of curved beams 
are investigated with numerical examples.  

 

2. Equations of motion  

2.1 Assumption and geometric constraint equation 
In this section, equations of motion of a rotating cantilever 
curved beam are derived based on the following assumptions. 
The beam has homogeneous and isotropic material properties. 
The elastic and the centroidal axes of the cross-section of a 
beam coincide so that effects due to eccentricity need not 
be considered. The beam has a slender shape so that the 
shear and the rotary inertia effects can be neglected. The 
shear strains due to change of normal stresses, such as bending 
and warping normal stresses, are negligibly small (Euler-
Bernoulli hypothesis). These assumptions result in simplified 
equations of motion with which the main issues of this study 
(the stiffening effect and modal characteristics variation due to 
rotation) can be effectively investigated. 
      Fig.1 shows the configuration of a rotating curved 
beam attached to a hub. A generic point P  which lies on 
the undeformed neutral axis moves to P′  when the 
beam is deformed. Cylindrical deformation variables ru  

and uθ  are conventionally employed to express the elastic 
deformation. In the present study, a non-cylindrical variable 
s  denoting the stretch along the neutral axis of the beam is 
employed instead of uθ . 
There is a geometric relation between the stretch s  and 
the cylindrical deformation variables. This relation is later 
used to drive the generalized inertia forces. From the 
differential geometry (see Ref.[15]), the following equation can 
be obtained. 

1
2 2 2

0
ru uOP R d

θ
θ σ

σ σ

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞′ = + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
∫               (1)  

where OP′  denotes the length of the curved beam after 
deformation. If the stretch variable s  is employed, one can 
write the equation as follows: 
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Fig. 1 Configuration of a rotating cantilever curved beam 
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⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞+ = + +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
∫              (2)  

By using binomial expansion of the integrand of equation (2), 
the following approximated equation can be obtained. 

 
2

0

1
2

rus u d
R

θ

θ σ
σ

∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠∫                  (3)  

 
2.2  Approximation of deformation variables and strain 

energy expression 
In the present work, s  and ru  are approximated by using 
functions and corresponding coordinates to drive the 
ordinary differential equations of motion. The modeling 
method employing hybrid deformation variables is described in 
detail in Ref.[5]. By employing the Rayleigh-Ritz method, 
the deformation variables are approximated as follows: 

     ( ) ( )
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1 1
1

i i
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s q t
μ

θ
=

= Φ∑                     (4)  

( ) ( )
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r i i
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u q t
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θ
=

= Φ∑                 (5)  

where 
1iΦ  and 2iΦ  are the spatial function for s  and 

ru ; 1μ  and 2μ  are the numbers of generalized 

coordinates 
1iq  and 

2iq . Using the strain energy form (in 

Ref.[12]) employing the stretch variable s , the total 
strain energy can be described as follows:  

0 0
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3 20 0
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2 2

r
r

d uds EIU EA d u d
R d R d

θ θ
θ θ

θ θ
⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫   (6)  

where E  is Young’s modulus, A  is the cross-section 
area, I  is the second area moment of the cross-section, R  
is the radius of the curved beam, and 

0θ  is the curvature 

angle of curved beam. Thus, 0θ =  at the fixed end 
and 0θ θ=  at the free end. 
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2.3 Equations of motion  

Under the assumptions given in Section 2.1, the 
equations of motion can be derived from the following 
equation (see Ref.[14]). 

0

0
0

p
p

i i

v UR a d
q q

θ
ρ θ

⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂⎝ ⎠

∫
r

r
�

&
                   (7)  

The acceleration par  can be obtained by differentiating 
the velocity pvr  with respect to time, which can be 
obtained by using the following equation.  

( ) ( )A
p o A d r u

v v r u
dt

ω
+

= + × + +
r r

rr r r r               (8)  

The third term in the right hand side of Eq.(8)  denotes 
the time differentiation of vector r u+

r r  in the frame 
A (the rigid hub). Using the coordinate systems fixed to 
the rigid hub, ovr , Aωr , rr  and ur can be expressed as 
follows: 

3 2
ov raω=
r r                         (9)  

3 3
A aω ω=
r r                         (10)  

1 2sin (1 cos )r R a R aθ θ= − −
r r r               (11)  

( ) ( )2 1 1 2cos sin cos sinru u a a u a aθ θθ θ θ θ= + + −
r r r r r    (12)  

 
The velocity of point P can be obtained as follows 
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r
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   (13)  

 
Using Eqs. (3) and (13) , the partial derivative of the velocity of  P  
with respect to the generalized speed 

iq&  can  be  obtained  as: 
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where η  denotes partial differentiation with respect to the 
dummy variable η . By differentiating Eq. (13) , the 

acceleration of P  can be obtained as follows: 
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    (15)  

By linearizing the generalized inertia forces, equations 
of motion are finally obtained as follows. 
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θ
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The underline terms indicate the stiffness variation induced 
by rotational motions. 
 
2.4 Dimensionless equations of motion 

To lend generality to the numerical results, Eqs.(16, 17) are 
transformed into dimensionless equations. Several 
dimensionless variables and parameters are defined as follows: 

  t
T

τ �                                (18)  

0

θξ
θ

�           (19)  

0

j
j

q
q

Rθ
�           (20)  

r
R

δ �                                (21)  

3Tγ ω�                               (22)  
4 4

0RT
EI

ρ θ
�           (23)  

The parameters γ  and δ  represent the angular speed ratio 
and the hub radius ratio. For the modal analysis, the 
right hand terms of the equations can be ignored. Thus the 
dimensionless equations of motion are obtained as  

1
11 21 2 11 2

1 1 1 1
1

2 0S
ij j ij j ij j ij j

j
m q m q m q k q

μ

γ γ α
=

⎡ ⎤+ − + =⎣ ⎦∑ && &          (24)  

2
22 12 2 22 2 2

2 2 2 2 2 2
1

2 0B GA GB
ij j ij j ij j ij j ij j ij j

j

m q m q m q k q k q k q
μ

γ γ γ δ γ
=

⎤⎡ − − + + + =⎣ ⎦∑ && &   (25)  

where 
1

0ij i jm dαβ
α βψ ψ ξ= ∫                           (26)  

1

1 , 1 ,0

S
ij j ik dξ ξψ ψ ξ= ∫           (27)  

1 1 1 12 2 4
2 , 2 , 0 2 , 2 0 2 , 2 0 2 20 0 0 0

B
ij j i j i i j j ik d d d dξξ ξξ ξξ ξξψ ψ ξ θ ψ ψ ξ θ ψ ψ ξ θ ψ ψ ξ= + + +∫ ∫ ∫ ∫  (28)  
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( ) ( )1 0 0
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θ
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         (30)  

where ψ  is the function of ξ  rather than θ . 
In Eq.(24), the α  is defined as follows:  

( )
1 22

0A R
I
θ

α
⎛ ⎞

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

    (31)  

This parameter which is often called the slenderness ratio is 
proportional to the length to thickness ratio of the beam. 
 
 2.5 Modal formulation 
Eq. (24)  and(25) are expressed in a matrix form as follows： 

11 111 12 11

12 222 21 22

0 0 0
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0 0 0
jj j

jj j

qq qM C K
qq qM C K

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭ ⎩ ⎭

&& &

&& &
  (32)  

In Eq.(32), 11M and 22M  denote matrices which are  

composed of elements 11
ijm and 22

ijm . The sub-matrices 

are defined as follows: 
12 122C Mγ= −                                (33)  

21 212C Mγ= +                                (34)  
2 2

11 11 sK M Kγ α= − +                          (35)  
2 2 2

22 22 B GA GBK M K K Kγ γ δ γ= − + + +             (36)  
 

3. Numerical study and discussion 

In Table 1, the first natural frequency of the non-rotating 
cantilevered curved beams obtained with the present 
modeling method are compared to those of Ref.[12] in which 
Rayleigh-Ritz method is employed to obtain the upper bound 
and the Dunkerley’s method is employed to obtain the lower 
bound.  This shows that the present method is qualitatively 
equivalent to the conventional modeling method if the motion 
induced stiffness variation effect is ignored. 
The natural frequencies of straight beam increase as the 
rotating speed increases. For curved beams with large 
radius and small curvature angle (almost straight beam) their 
natural frequencies increase as those of straight beams do. 
However, when the curvature angle gets larger, the first 
natural frequency may decrease. 
The first bending natural frequency variation is shown in 
Fig.2(a). To obtain the result, 8 assumed modes are used. When the 
curvature angle is small, the first bending natural frequency 
increases. But as the curvature angle increases, the increasing rate 
of the first natural frequency gets attenuated. The second 
natural frequency variation is shown in Fig.2(b). It exhibits the 
same increasing trends as that of the straight beam. As the 
rotating angular speed increases, the second bending natural 
frequency increases. When the curvature angle increases, the 
second bending natural frequency decreases. 

Table 1 Comparison of the first bending natural frequency 

0θ Upper bound 
Ref.[12] 

Lower bound 
Ref.[12] 

Present  

10 3.51 3.466 3.518 
20 3.52 3.473 3.523 
30 3.53 3.483 3.533 
40 3.55 3.498 3.546 
50 3.57 3.517 3.564 
60 3.59 3.540 3.587 
70 3.62 3.568 3.614 
80 3.66 3.600 3.646 
90 3.71 3.637 3.684 
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Fig.2 Bending natural frequency variations (a) first        

natural frequency (b) second natural frequency 
 

 
When the angular speed of a rotating cantilevered curved 
beam matches the natural frequency (as shown in Fig.3(a)), 
resonance may occur. Such an angular speed is usually called 
the tuned angular speed. Severe resonance phenomena may 
occur at the tuned angular speed during the operation of the 
rotating beams. So the tuned angular speed must be 
calculated for safe designs of rotating beams. The tuned 
angular speeds for different hub radius ratios are shown in Fig.3. 
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Fig.3 Tuned angular speed in bending vibration with different          
hub ratiosσ . (a) 0σ =  (b) 0.5σ =  (c) 1σ =  

 
The above figures indicate that the curvature angle of a 
curved beam may significantly affect the tuned angular speed. 
The case of zero hub radius ratio is shown in Fig.3(a). It is 
observed that the tuned angular speed varies with the curvature 
angle (from 0o  to 90o ).  As the curvature angle increases, 
the tuned angular speed decreases. In Fig.3(b), it 
indicates that the curved beams with small curvature angle have 
no tuned angular speed if the hub radius ratio exceeds a certain 

value. As the curvature angle exceeds 60o  the tuned angular 
speed exists. It means that resonance will not happen with a 
small curvature angle. Fig.3(c) shows that the tuned 
angular speed exists only if the curvature angle increases large 
enough. As the hub radius ratio increases, the tuned angular 
speed of certain curvature angle increases. Also the tuned 
angular speed of a beam with small curvature angle 
disappears when the hub radius ratio increases. If the curvature 
angle is equal to90o , the tuned angular speed exists with a hub 
ratio (between 0 to 1).  
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Fig. 4 Variations of natural frequencies with the 
coupling effect for different curvature angles  
(a) 0

0 10θ =  (b) 0
0 60θ =  

 
The lowest four natural frequency loci for curvature 

angles of 10o  and 60o  are plotted with solid lines in Fig.4. 
Dimensionless variables of 0.1δ =  and 70α = are used. The 
value of 70α =  guarantees the assumption of Eulerian beam. 
The dotted lines in the Fig.4 represent the results of ignoring the 
coupling terms. At 0γ = ,  the first three of them represent 
the lowest three bending frequencies and the fourth represents 
the first stretching natural frequency. The trend of the results 
coincide with those of Ref.[5]. The comparisons of coupling 
effect with curvature angles of 10o  and 60o  are shown in Fig.4(a) 
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and Fig.4(b). These results indicate that the curvature angle mainly 
affects the first bending natural frequency when the coupling effect is 
considered. The other three natural frequency loci show smaller 
differences. 

In Fig.5, the coupling effects of the first bending 
natural frequency with different curvature angles are 
shown. When the coupling effect is considered, there 
exists an angular speed where first bending natural 
frequency becomes zero. The rotating cantilevered 
curved beam will buckle at the zero natural frequency. The 
angular speed will be called the buckling speed. It 
indicates that as the curvature angle increases, the buckling 
speed decreases. When the curvature angle is not large 
enough, the differences between the coupling considered 
results and the coupling ignored results show the same trend as 
that of the straight beams. As the curvature angle increases, 
however, the difference between the coupling considered 
results and the coupling ignored results gets smaller. As shown in 
Fig.5, when the curvature angle reaches 75o  and 90o , the 
coupling effect on the first bending natural frequency shows the 
same trend with the coupling ignored case. In Fig.4, it shows that 
when the curvature angles are small, the buckling speeds are 
nearly the same. Fig.5 shows that the buckling speeds decrease 
and the coupling effect becomes negligible as the curvature angle 
increases. 
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Fig.5 The coupling effect on the first bending natural

 frequency with different curvature angles 
 

4. Conclusions 

In this study, equations of motion of rotating cantilevered 
curved beam are derived with a modeling method which employs 
hybrid deformation variables. The equations are transformed into 
dimensionless forms in which dimensionless parameters are 
identified. The natural frequencies versus the rotating speed are 
numerically obtained. While the first natural frequency of straight 
beam increases as the rotating speed increases, that of a curved 
beam decreases (if the curvature angle exceeds a certain value). 
As the hub ratio increases, tuned angular speed of certain small 
curvature does not exist. The equation set governing bending 
motion was shown to be coupled with the set governing 

stretching motion. When the coupling effect is considered, the 
buckling speed could be found. It was also shown that the 
coupling effect gets smaller as the curvature angle increases.  
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