• Title/Summary/Keyword: linear elastic analysis

Search Result 758, Processing Time 0.026 seconds

Exact Distortional Deformation Analysis of Steel Box Girders (강상자형 거더의 엄밀한 단면변형(Distortion) 해석)

  • 진만식;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.43-50
    • /
    • 2002
  • Main goal of this study is to develop MATLAB programming for exact analysis of distortional deformation of the straight box girder. For this purpose, a theory for distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, the governing equation of the beam-column element on elastic foundation is derived. An element stiffness matrix of the beam element is established via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of the element using exact dynamic stiffness matrix, buckling loads for the continuous beam structures with elastic foundation and distortional deformations of box girders are calculated.

  • PDF

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.

The Relationship of Structural Properties, Subjective Textures and Sensibilities of Knit Fabrics - Wool/Rayon Fiber Contents and Loop Length - (니트 소재의 구성 특성과 주관적 질감 및 감성의 관계 - 양모/레이온 혼용률 및 편환장 변화를 중심으로 -)

  • Ju, Jeong-Ah;Ryu, Hyo-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1158-1167
    • /
    • 2005
  • The purpose of this study is to examine the effect of structural properties of plain knit fabrics on the subjective textures and sensibilities of consumers. We investigated the relationship of subjective textures and sensibilities according to fiber contents of wool/rayon and stitch loop length. We made 20 plain knit fabrics, as specimens, with a combination of 5 kinds of fiber contents and 4 kinds of stitch loop length. A factor analysis showed that subjective textures are classified into 3 categories with $R^2=70.32\%$: 'surface-rough', 'drapable', 'bulky' and 'elastic' and subjective sensibilities into 3 categories with $R^2=68.12\%$: 'stable/neat', 'feminine/elegant' and 'natural/comfortable'. The fiber contents of wool/rayon had a positive and linear relation with 'surface-rough', but had a relatively non-linear one with 'bulky' and 'elastic' categories of textures, and 'feminine/elegant' of sensibilities. The stitch loop length had a linear influence on 'drapable' and 'stable/neat', but had a non-linear influence on other subjective textures and sensibilities.

Pseudo plastic zone analysis of steel frame structures comprising non-compact sections

  • Avery, P.;Mahendran, M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.371-392
    • /
    • 2000
  • Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.

Correlation Analysis between Ultrasonic Parameters and Elastic Modulus of Apple

  • Kim, Ghi-Seok;Kim, Ki-Bok;Park, Jeong-Gil;Lee, Sang-Dae;Jung, Hyun-Mo;Kim, Man-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • The firmness of fruit is one of the most important quality factors and is highly correlated to the elastic modulus. In this study, the ultrasonic transmission method was applied to evaluate the elastic modulus of the apple. In order to transmit and receive the ultrasonic wave through the whole apple, the ultrasonic measurement setup consisted of ultrasonic pulser, two specially fabricated ultrasonic transducers for fruit and digital storage oscilloscope. Ultrasonic parameters such as ultrasonic wave velocity, apparent attenuation, and peak frequencies were analyzed. The elastic modulus of apple was measured by using compression test apparatus. The correlations between ultrasonic parameters and elastic modulus were analyzed. A multiple linear regression model describing the relationship between elastic modulus and ultrasonic parameters was proposed.

Set-Point Control of Elastic Joint Robots Using only Position Measurements

  • Son, Young-Ik;Hyungbo Shim;Seo, Jin-Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1079-1088
    • /
    • 2002
  • Motivated by the dynamic output feedback passification results, point-to-point control laws for an elastic joint robot are presented when only the position measurements are available. The proposed method makes a parallel connection of the robot system and an input-dimensional linear system which obtains the effect of the desired differentiators. It is shown that the closed-loop nonlinear robot system can be rendered output strictly passive and the regulation of the system is achieved in the end. Robustness analysis is also given with regard to uncertainties on the robot parameters. Performance of the proposed control law is illustrated in the simulation studies of a manipulator with three revolute elastic joints.

Distortion Control of the Curved Panel Using Elastic Bending Method

  • Kim H. G.;Shin S. B.;Youn J. G.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • Finite element analysis (FEA) and experimental studies on an elastic bending method have been performed in order to control the angular distortion at the fillet weldment for curved panel. Process parameters for the elastic bending method such as clamping span and release time were analyzed with reference to welding condition and geometric effect of the curved panel, which can minimize or prevent the angular distortion by producing a proper skin stress to the fillet weldment. The amounts of the angular distortion decrease almost in a linear manner with an increase in the skin stress. The skin stress required for non-angular distortion at the fillet weldment is strongly dependent on the plate thickness, not the heat intensity applied. The clamping span for obtaining uniform skin stress was defined as functions of the plate thickness and length of the free edge. Clamp should be removed after the fillet weldment is cooled down to room temperature for non-angular distortion. Effectiveness of the elastic bending method established was verified by its application to an actual curved panel.

  • PDF

Design of Visualization System for Stress Evaluation of Elastic Wave (탄성파의 응력평가를 위한 가시화시스템 설계)

  • Nam, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.576-582
    • /
    • 2008
  • This paper describes a synthesized photoelastic method developed for the visualization and evaluation of sound pressure distribution of elastic wave in a solid. The visualization of wave stress field is achieved by synthesizing two photoelastic pictures, in which the direction of the principal axis of linear polariscopes differs by $45^{\circ}$. From the analysis of the wave stress distribution using this method, it is possible to evaluate the characteristics of elastic waves in a solid, such as the intensity of stress, directivity and resolution characteristics of the wave emitted from a commercial probe, and characteristics of scattering from various types of defects.

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.