Browse > Article
http://dx.doi.org/10.12989/sem.2017.64.6.751

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate  

Kiran, M.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
Kattimani, S.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
Publication Information
Structural Engineering and Mechanics / v.64, no.6, 2017 , pp. 751-763 More about this Journal
Abstract
This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.
Keywords
magneto-electro-elastic plate; FSDT; finite element; buckling analysis; static studies; in-plane loads;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82, 1293-301.   DOI
2 Lang, Z. and Xuewu, L. (2013), "Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic circular cylindrical shells", Appl. Math. Model., 37(4), 2279-2292.   DOI
3 Li, Y.S., Cai, Z.Y. and Shi, S.Y. (2014), "Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory", Compos. Struct., 111(1), 522-529.   DOI
4 Li, Y.S. (2014), "Buckling analysis of magnetoelectroelastic plate resting on Pasternak elastic foundation", Mech. Res. Commun., 56, 104-114.   DOI
5 Li, Y.S., Ma, P. and Wang, W. (2016), "Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory", J. Intell. Mater. Syst. Struct., 27(9), 1139-1149.   DOI
6 Liu, J., Zhang, P., Lin, G., Wang, W. and Lu, S. (2016a), "Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method", Eng. Anal. Bound. Elem., 68, 103-114.   DOI
7 Liu, J., Zhang, P., Lin, G., Wang, W. and Lu, S. (2016b), "High order solutions for the magneto-electro-elastic plate with nonuniform materials", Int. J. Mech. Sci., 115, 532-551.
8 Liu, M.F and Chang, T.P (2010), "Closed form expression for the vibration problem of transversely isotropic magneto-electroelastic plate", ASME J. Appl. Mech., 77, 24502-10.   DOI
9 Ebrahimi, F. and Barati, M.R. (2016d), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intell. Mater. Syst. Struct., Doi: 10.1177/1045389X16672569.   DOI
10 Ansari, R. and Gholami, R. (2016), "Size-dependent buckling and postbuckling analyses of first- order shear deformable magnetoelectro-thermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. Struct. Stab. Dyn., 10, 1750014.
11 Ebrahimi, F. and Barati, M.R. (2016a), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792.   DOI
12 Bhangale, R.K. and Ganesan, N. (2006). "Static analysis of simply supported functionally graded and layered magneto-electroelastic plates", Int. J. Solid. Struct., 43, 3230-3253.   DOI
13 Boomgaard, V. J. and Born, R. (1978), "A sintered magnetoelectric composite material $BaTiO_3$-Ni (Co, Mn)$Fe_2O_4$", J. Mater. Sci., 13(7), 1538-48.   DOI
14 Bouazza, M., Lairedj, A., Benseddiq, N. and Khalki, S. (2016), "A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates", Mech. Res. Commun., 73, 117-126.   DOI
15 Farajpour, A. and Rastgoo, A., (2017), "Size-dependent static stability of magneto-electro-elastic CNT/MT-based composite nanoshells under external electric and magnetic fields", Microsyst. Technol., 23(12), 1-18.   DOI
16 Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016) "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336.   DOI
17 Pan, E. and Heyliger, P.R. (2002), "Free vibration of simply supported and multilayered magnetoelectro-elastic plates", J. Sound Vib., 252(3), 429-442.   DOI
18 Milazzo, A. (2016), "Unified formulation for a family of advanced finite elements for smart multilayered plates", Mech. Adv. Mater. Struct., 23(9), 971-980.   DOI
19 Moita, J., Soares, C.M.M. and Soares, C.A.M. (1996), "Buckling behaviour of laminated composite structures using a discrete higher-order displacement model", Compos. Struct., 35(1), 75-92.   DOI
20 Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electroelastic plates", J. Appl. Mech.-T., 68, 608-618.   DOI
21 Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magnetoelectro-elastic laminates in cylindrical bending", Int. J. Solid. Struct., 40(24), 6859-6876.   DOI
22 Pan, E. and Han F. (2005), "Exact solutions for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43, 321-339.   DOI
23 Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic plates", J. Sound Vib., 292, 626-644.   DOI
24 Jamalpoor, A., Ahmadi-Savadkoohi, A. and Hosseini-Hashemi, S. (2016), "Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory", Smart Mater. Struct., 25(10), 105035.   DOI
25 Grover, N., Maiti, D.K. and Singh, B.N. (2014), "An efficient C0 finite element modeling of an inverse hyperbolic shear deformation theory for the flexural and stability analysis of laminated composite and sandwich plates", Finite Elem. Anal. Des., 80, 11-22.   DOI
26 Ray, M.C., Bhattacharya, R. and Samanta, B. (1994), "Static analysis of an intelligent structure by the finite element method", Comput. Struct., 52, 617-631.   DOI
27 Luccioni, L.X. and Dong, S.B. (1998), "Levy-type finite element analyses of vibration and stability of thin and thick laminated composite rectangular plates", Compos. B Eng., 29B, 459-475.
28 Razavi, S. (2017), "On the buckling the behavior of a multiphase smart plate based on a higher-order theory", Mech. Adv. Compos. Struct. , 4(1), 47-58.
29 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, LLC.
30 Jadhav, P. and Bajoria, K. (2013), "Stability analysis of piezoelectric FGM plate subjected to electro-mechanical loading using finite element method", Int. J. Appl. Sci. Eng., 11(4), 375-391.
31 Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded Magneto-electroelastic plates", Int. J. Mech. Sci., 99, 154-167.   DOI
32 Kattimani, S.C. and Ray, M.C. (2014a), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 114, 51-63.   DOI
33 Kattimani, S.C. and Ray, M.C. (2014b), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", Int. J. Mech. Mater. Des., 10, 351-378.   DOI
34 Kattimani S.C (2015), "Active control of geometrically nonlinear vibrations of Magneto-Electro-Elastic plates and dhells", Ph.D. Dissertation, IIT Kharagpur, India.
35 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mech. Sinica, 30(4), 516-525.   DOI
36 Kulkarni, K., Singh, B.N. and Maiti, D.K. (2015), "Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory", Compos. Struct., 134, 147-157.   DOI
37 Sreehari, V.M., George, L.J. and Maiti, D.K. (2016), "Bending and buckling analysis of smart composite plates with and without internal flaw using an inverse hyperbolic shear deformation theory", Compos. Struct., 138, 64-74.   DOI
38 Rogowski, B. (2015), "The transient analysis of a conducting crack in magneto-electro-elastic half-space under anti-plane mechanical and in-plane electric and magnetic impacts", Arch. Appl. Mech., 85(1), 29-50.   DOI
39 Simoes Moita, J.M., Mota Soares, C.M. and Mota Soares, C.A. (2009), "Analyses of Magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91, 421-426.   DOI
40 Sladek, J., Sladek, V., Kharulec, S. and Pan, E. (2013), "Analyses of functionally graded plates with magnetoelectroelasic layer", Smart Mater. Struct., 22, 035003.   DOI
41 Vinyas, M. and Kattimani, S.C. (2017b), "Finite element based assessment of static behaviour of multiphase magneto-electroelastic beam under different thermal loading", Struct. Eng. Mech., 62(5), 519-535.   DOI
42 Thai, H.T and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-81.   DOI
43 van Suchtelen, J. (1972), "Product properties: a new application of composite materials", Philips Res. Rep., 27, 28-37.
44 Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237.   DOI
45 Viun, O., Loboda, V. and Lapusta, Y. (2016), "Electrically and magnetically induced Maxwell stresses in a magneto-electroelastic medium with periodic limited permeable cracks", Arch. Appl. Mech., 86(12), 2009-2020.   DOI
46 Ebrahimi, F. and Barati, M.R (2016e), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25, 105014.   DOI
47 Vuksanovic, D. (2000), "Linear analysis of laminated composite plates using single layer higher-order discrete models", Compos. Struct., 48, 205-211.   DOI
48 Wu, C.P., Chen, S.J. and Chiu, K.H. (2010), "Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method", Mech. Res. Commun., 37(1), 54-60.   DOI
49 Buchanan, G.R. (2004), "Layered versus multiphase magnetoelectro-elastic composites", Compos. B Eng., 35(5), 413-420.   DOI
50 Chen J.Y., Heyliger P.R. and Pan, E. (2014), "Free vibration of three-dimensional multilayered magneto-electro-elastic plates under clamped/free boundary conditions", J. Sound Vib., 333, 4017-4029.   DOI
51 Ebrahimi, F., Dabbagh, A. and Barati, M.R. (2016), "Wave propagation analysis of a size-dependent magneto-electroelastic heterogeneous nanoplate", Eur. Phys. J Plus, 131(12), 433.   DOI
52 Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magnetoelectrical field in thermal environment", Journal of Vibration and Control, Doi: 10.1177/1077546317708105.   DOI
53 Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350.   DOI
54 Zhou, K., Li, Y.D. and Liu, S.L. (2016), "Effects of the volume fraction of piezoelectric particles in the magneto-electro-elastic interfacial region on the fracture behavior of a laminate multiferroic plate", Acta Mech., 228(4), 1229-1248.
55 Ebrahimi, F. and Barati, M.R. (2016b), "Nonlocal Thermal Buckling Analysis of Embedded Magneto-Electro-Thermo-Elastic Nonhomogeneous Nanoplates", IJST-T Mech. Eng., 40(4), 243-264.
56 Ebrahimi, F., Jafari, A. and Barati, M.R. (2016), "Free Vibration Analysis of Smart Porous Plates Subjected to Various Physical Fields Considering Neutral Surface Position", Arab. J. Sci. Eng., 1-17.
57 Ebrahimi, F. and Barati, M.R. (2016c), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J Plus, 131(9), 346.   DOI
58 Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidisc. Model. Mater. Struct., 3(4), 461-476.   DOI