• 제목/요약/키워드: linear differential systems

검색결과 258건 처리시간 0.025초

MILP MODELLING FOR TIME OPTIMAL GUIDANCE TO A MOVING TARGET

  • BORZABADI AKBAR H.;MEHNE HAMED H.
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.293-303
    • /
    • 2006
  • This paper describes a numerical scheme for optimal control of a time-dependent linear system to a moving final state. Discretization of the corresponding differential equations gives rise to a linear algebraic system. Defining some binary variables, we approximate the original problem by a mixed integer linear programming (MILP) problem. Numerical examples show that the resulting method is highly efficient.

$\delta$-연산자를 이용한 강인한 모델 추종형 서보 제어 시스템의 구성에 관한연구 (A Design on Robust Model Following Servo System Using $\delta$--Operator)

  • 김정택;황현준
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2000
  • In the fast sampling limit the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

Study for the Safety of Ships' Nonlinear Rolling Motion in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • 한국항해항만학회지
    • /
    • 제33권9호
    • /
    • pp.629-634
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

Some Asymptotic Stability Theorems in the perturbed Linear Differential System

  • An, Jeong-Hyang;Oh, Yong-Sun
    • 한국산업정보학회논문지
    • /
    • 제7권1호
    • /
    • pp.75-80
    • /
    • 2002
  • 미분시스템의 안정성에 관한 이론에서 페론 방법은 각 개념의 정의와 적분부등식을 통해서 해의 정성적 규명을 연구하는 최근에 가장 일반적 형식 중의 하나이다. 이 논문을 통해서는 특히, 두 개의 섭동 e(t,x)와 f(t,x)를 수반하는 미분 시스템의 자명해와 접근적 안정성의 여러 가지 양태를 페론 방법을 써서 조사해 보고 이들의 충분조건을 찾아 몇 가지 정리를 얻었다.

  • PDF

Study for the Nonlinear Rolling Motion of Ships in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 추계학술대회
    • /
    • pp.239-240
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

  • PDF

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming

  • Lee Jongbae;Park Chang-Woo;Sung Ha-Gyeong;Lim Joonhong
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.225-235
    • /
    • 2005
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included in the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Kalman Filtering for Linear Time-Delayed Continuous-Time Systems with Stochastic Multiplicative Noises

  • Zhang, Huanshui;Lu, Xiao;Zhang, Weihai;Wang, Wei
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.355-363
    • /
    • 2007
  • The paper deals with the Kalman stochastic filtering problem for linear continuous-time systems with both instantaneous and time-delayed measurements. Different from the standard linear system, the system state is corrupted by multiplicative white noise, and the instantaneous measurement and the delayed measurement are also corrupted by multiplicative white noise. A new approach to the problem is presented by using projection formulation and reorganized innovation analysis. More importantly, the proposed approach in the paper can be applied to solve many complicated problems such as stochastic $H_{\infty}$ estimation, $H_{\infty}$ control stochastic system with preview and so on.

Boundary Control of a Tensioned Elastic Axially Moving String

  • Kim, Chang-Won;Hong, Keum-Shik;Park, Hahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2260-2265
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned elastic axially moving string is investigated. The dynamics of the translating string are described by a non-linear partial differential equation coupled with an ordinary differential equation. A time varying control in the form of right boundary transverse motions is proposed in stabilizing the transverse vibrations of the translating continuum. A control law based on Lyapunov's second method is derived. Exponential stability of the closed-loop system is verified. The effectiveness of the proposed controller is shown through simulations.

  • PDF

On the performance of heat absorption/generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid

  • Hayat, Tasawar;Khan, Muhammad Ijaz;Waqas, Muhammad;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1645-1653
    • /
    • 2017
  • This investigation explores the thermally stratified stretchable flow of an Oldroyd-B material bounded by a linear stretched surface. Heat transfer characteristics are addressed through thermal stratification and heat generation/absorption. Formulation is arranged for mixed convection. Application of suitable transformations provides ordinary differential systems through partial differential systems. The homotopy concept is adopted for the solution of nonlinear differential systems. The influence of several arising variables on velocity and temperature is addressed. Besides this, the rate of heat transfer is calculated and presented in tabular form. It is noticed that velocity and Nusselt number increase when the thermal buoyancy parameter is enhanced. Moreover, temperature is found to decrease for larger values of Prandtl number and heat absorption parameter. Comparative analysis for limiting study is performed and excellent agreement is found.

EFFICIENT PARALLEL ITERATIVE METHOD FOR SOLVING LARGE NONSYMMETRIC LINEAR SYSTEMS

  • Yun, Jae-Heon
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.449-465
    • /
    • 1994
  • The two common numerical methods to approximate the solution of partial differential equations are the finite element method and the finite difference method. They both lead to solving large sparse linear systems. For many applications, it is not unusal that the order of matrix is greater than 10, 000. For this kind of problem, a direct method such as Gaussian elimination can not be used because of the prohibitive cost. To this end, many iterative methods with modest cost have been studied and proposed by numerical analysts.(omitted)

  • PDF