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Abstract : Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected 

to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations 

of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic 

linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear 

stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear 

response of the ship is determined in the frequency domain by a linear analysis method finally.
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1. Introduction

For the rolling motion of  ships, there are many authors 

who have proposed different models for damping and 

restoring moment in some assumptions. The response of 

rolling motions of a ship can be adequately described by a 

linear equation if the rolling angle is small. However, as the 

amplitude of oscillation increases, nonlinear effects come into 

play(Lee, et al., 2007, Surendran, et al., 2005, Surendran, et 

al., 2007). Then vessels stability problems need to resolve the 

nonlinear mathematical models of rolling motion. But there 

are very few special cases which can obtain the exact 

solutions for nonlinear systems subjected to random 

excitations. For this reason, several approximate techniques 

have been developed for the probability density function of 

nonlinear systems. Generally, these methods can be 

subdivided in two groups(Brukner and Lin, 1987, Cai and Lin, 

1988, Caughey, 1986, Langley, 1988, Polidori and Beck, 1996): 

quasi linear methods and quite nonlinear methods. Quasi 

linear methods substitute the solution of a nonlinear problem 

by a sequence of related linear ones and one of the most 

common techniques in this group is the stochastic 

linearization method(Proppe, et al., 2003, Socha, 2005). Quite 

nonlinear methods substitute the solution of a given nonlinear 

problem by a nonlinear know one(Belenky, et al., 1998). 

Recently, an alternative technique called stochastic 

nonlinearization has been suggested, in which one replaces 

the original nonlinear stochastic differential equation by 

another ‘close’ nonlinear equation, possessing an exact 

solution(Zhu, et al., 1994).

Recently, there are many scholars who are interesting in 

the nonlinear rolling oscillation because of the safety of ship 

received more and more recognition by the government or 

international maritime organizations. A great deal of methods 

are fully developed at the same period excited by the 

foundation. An approximation method for the conventional 

linear and linear plus quadratic rolling oscillation was 

presented in Ref.(Dalzell, 1978). Concentrated on the 

phenomena of ship capsizing due to an initial inclination, 

nonlinear governing equation of roll was linearized and 

converted into a Mathew-type equation and the stable, 

critical and unstable conditions for ship stability has 

suggested in Ref. (Lee, 2000). An experimental to nonlinear 

rolling motion of a ship model in regular wave have tested in 

Ref.(Contento, et al., 1996). An exact solution for free 

nonlinear uncoupled rolling or pitching motion of a 

submerged vehicle has proposed in Ref.(Birman, 1986). 

Various types of damping associated with rolling and 

empirical relationships for roll damping have been presented 

in Ref.(Chakrabarti, 2001). Surendran et al. discussed the 

linear response of a Ro-Ro ship and considered various types 

of damping and restoring moments to show the nonlinear 

response in regular waves(Surendran and Venkata Ramana 

Reddy, 2003).  
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In this study, the stochastic linearization and 

nonlinearization techniques are combined, which is specially 

designed for rolling motion systems with both nonlinear 

damping and nonlinear restoring force. Instead of the 

classical stochastic linearization technique, where both 

nonlinear damping and nonlinear restoring force are replaced 

by their respective linear counterparts, here we use only a 

partial linearization. The equivalent damping parameter is 

obtained by solving a nonlinear algebraic equation either 

analytically or numerically. The proposed procedure yields 

simple equations to determine the desired probabilistic 

characteristics.  

2. Concept of partial linearization for nonlinear 

stochastic system

Partial linearization method is applicable for the system 

with stochastic differential equations. We will present a 

single second order equation here and consider the basic 

nonlinear system as the following equation(Epele, et al., 1985, 

Haddara and Zhang, 1994, Ochi, 1986)

( , ) ( ) ( )Y f Y Y g Y M t+ + =&& &    (1)

Where f and g are known nonlinear functions, the 

excitation M(t) is assumed to be a Gaussian white noise 

with spectral density K. Then, the nonlinear damping force f 

can be replace by an equivalent linear one,

( ) ( )eY Y g Y M tβ+ + =&& &
  (2)

In order to obtain the linear damping coefficient of the 

substituting system(2), the key issue is to insure the 

equivalent damping coefficient βe has the same effect as the 

function  f in stochastic system(6). The criterion for selecting 

βe is that the average energy dissipation remains the same,

2( , ) [ ]eE Y f Y Y E Yβ⎡ ⎤⋅ =⎣ ⎦
& & &

            (3)

Which represent the average work per unit time performed 

by the original nonlinear damping force and the equivalent 

linear damping force.

2( , ) [ ] mineE Y f Y Y E Yβ⎡ ⎤⋅ − =⎣ ⎦
& & &

   (4)

Also, the stochastic linearization uses the least mean 

square criterion as follows

{ }2( , ) mineE f Y Y Yβ⎡ ⎤− =⎣ ⎦
& &

 (5)

Which also equals to equation(4), so the formally identical 

criterion (4) is used in both stochastic linearization and 

partial linearization, the ensemble averaging in equation (4) is 

performed with different probability densities for these two 

methods. In the stochastic linearization, the probability 

density is assumed to be Gaussian, while in the present 

partial linearization method, it is generally not 

Gaussian(Elishakoff and Cai, 1993). 

In equation(1), the left side is calculated. Ensemble 

averaging of equation result in

[ ]2
2 2 1 2 12 ( , ) ( ) 2d E Y E Y f Y Y g Y K

dt
π⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦⎣ ⎦  (6)

Which reduces to 

[ ]2 1 2( , )E Y f Y Y Kπ=              (7)

Here, a remarkable conclusion is leaded: the average work 

done by the damping force per unit time depends only on the 

spectral density of the excitation, regardless of the damping 

mechanism, for an oscillator with only an additive white 

noise excitation. Which is consistent with Karnopp’s 

conclusion by using a different proof(Karnopp, 1967). 

According to equation (3) and (7),

2 2

( , )
[ ] [ ]e

E Y f Y Y K
E Y E Y

πβ
⎡ ⎤⋅⎣ ⎦= =
& &

& &          (8)

The exact stationary probabilistic solution of equation (2) 

is a classical result of the random vibration,

2

0
( , ) exp ( )

2
ye yp y y C g u du

K
β
π

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫

&
&

 (9)

Where C is a constant determined from the normalization 

condition

2

0
exp ( )

2
ye yC g u du dydy

K
β
π

+∞ +∞

−∞ −∞

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ ∫ ∫

&
&
   (10)

The probability density (9) can be considered as an 

approximate one for the response of the original system and 

can be used in equation (7)to yield
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Substituting equation(10)  into equation(11), we obtain

[ ]
2

0
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0
( )

2
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3. Certification of equivalent damping coefficient 

for test ship

Suppose the rolling motions are uncoupled and the added 

mass term is independent of frequency. According to the 

typical single-degree-of-freedom (SDF) differential equation 

of intact ship rolling considering the nonlinearity in restoring 

moment and damping, the final form of the differential 

equation of motion is obtained as follows(Long, et al., 2009):

3 3
1 3 1 3 ( )d d k k m tφ φ φ φ φ+ + + + =&& & &

    (13)

Where 

44 44

44 44

44 44

/ ( ) 1,3
/ ( ) 1,3

( ) ( ) / ( )

i i

j j

d D I A i
k K I A j

m t M t I A

= + =
= + =

= +         (14) 

The equation is known as the hardening type Duffing 

oscillator when k3 is positive and the softening type Duffing 

oscillator when k3 is negative. Apply the partial linearization 

method, the above equation can be written as follows.

3
1 3 ( )e k k m tφ β φ φ φ+ + + =&& &

                   (15)  

Where

1/22
1 1

332 2e
d d d Kβ π

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦                     (16)

From above equation, once βe is determined, the 

approximate joint probability density (9) is also determined. 

In Fig. 1, the stationary mean square values of the 

displacement X for sytem are plotted against the stiffness 

nonlinearity parameter and he damping nonlinearity 

parameter respectively. Results computed from both the ‘full’ 

linearization and partial linearization are shown and 

compared with the Monte Carlo simulation results(Cai, 2004). 

The higher accuracy can be achieved with the present 

method as compared to the “full” linearization 

procedure(Elishakoff and Cai, 1993). It is shown that the 

partial linearization method is a consistent approximation 

scheme in the sense that the obtained approximate 

probability density for certain statistical moments of the 

system response.

 

Fig. 1 Mean square displacement with respect to stiffness 

nonlinearity: K=1, d1=0.1, d3=0.5,k1=1,k3=0(Elishakoff 

and Cai, 1993)

4. Results and discussions

After the coefficient βe are certified, the rolling oscillation 

equation of the ferry sails in beam seas can be described by 

adding the nonlinear term to the righting lever in the 

following form(Ikeda, et al., 2008, Lee, et al., 2009)

2 3 2
0 02 ( ) sin ek tφ νφ ω φ φ ω ω+ + + = Θ&& &

    (17) 

Where 

3
2
0

2
0( ) sin e

kk

m t t

ω

ω ω

=

= Θ                       (18)

When the ferry is in calm water, an impulsive disturbance 

in roll or roll velocity, such as that caused by a wind gust, 

can set up an oscillatory roll motion. The period of such roll 

motion in calm water depends on the ship’s stability or 

restoring moment properties, damping properties and the 

mass properties(Jiang, et al., 2000, Shin, et al., 2004). A 

sample rolling oscillation of such a ferry is shown in Fig. 4
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Fig. 4 A sample rolling decay in still water
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Actually, it is difficult to obtain the exact solution of the 

rolling motion(Davies and Liu, 1990, Jung-mo, et al., 2008). 

Here, an approximate solution is obtained by the following 

method.  The initial approximation of the equation is chosen 

as follows:

sin( )eA tφ ω ε= −                                (19)

Then

2

cos( )

sin( )
e e

e e

A t

A t

φ ω ω ε

φ ω ω ε

= −

= − −

&

&&                           (20)

These equation leads to the following two formulae:
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Because the derivatives changes with time, so the 

equations can be written as follows,

20
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A dt
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Substitute equation (20) in to above, we can obtain the 

average derivatives as follows
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        (23)

Finally, we can obtain the relationship between the ω/ω0 

and roll amplitude A.

( )
1/21/22 2

0
22

2

31 , 2 ,
4
a aN

A

ω ξ ψ ζ ψ ξψ
ω

κφ φξ ψ ζ
π

⎡ ⎤= − ± + −⎢ ⎥⎣ ⎦

Θ⎛ ⎞= + = =⎜ ⎟
⎝ ⎠

    (24) 

Then, the effects of variation in wave slope and damping 

parameters on the response of the oscillation system can be 

resolved. Fig. 2 shows the synchronous resonance curves of 

rolling oscillation for partial linearization damping with 

nonlinear restoring moment. The curves demonstrate that the 

effect of the variation in wave slope on the amplitude of the 

relative rolling oscillation. The rolling peak amplitude 

increase as the wave slope increases.
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Fig. 2 Roll response for partial stochastic linearization 

damping with nonlinear restoring moment

 5. Conclusions

This research studied the capsizing condition of a ferry 

considering hydrodynamic parameters in beam seas in 

addition to the characteristics of rolling damping and 

restoring moment. The linearity simplification equation for 

the single-degree-of-freedom nonlinear rolling oscillator, 

which subjected to an external variable excitation, has 

worked out based on the partial linearization method, which 

gives more accurate results than standard equivalent 

linearization method and best approximates the true system 

in some sense. Before the end of the study, the 

approximating solution to the stationary nonlinear random 

rolling oscillation problems was resolved. 

The work focuses on the importance of damping 

coefficient and variation of the wave slope on the roll 

response of a vessel(Lin and Yim, 1995). The calculation 

results demonstrate the complexity of nonlinear resonance of 

rolling oscillation. The effects of damping and wave 

steepness are not neglect for vessel design and analysis. As 

not much work has been done here, it is hoped that the 

paper will provide a preliminary sketch and will be useful for 

the designers to arrive at a proper reserve margin for the 

stability in resonant conditions considering waves and other 

environmental conditions. Future work includes testing the 

method on multiple degree of freedom systems, extending the 

method to non-stationary excitation and investigating what 

weighting functions should be used in the norms.
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