• 제목/요약/키워드: linear complex stiffness system

검색결과 34건 처리시간 0.022초

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Joint parameter identification of a cantilever beam using sub-structure synthesis and multi-linear regression

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.423-437
    • /
    • 2013
  • Complex structures are usually assembled from several substructures with joints connecting them together. These joints have significant effects on the dynamic behavior of the assembled structure and must be accurately modeled. In structural analysis, these joints are often simplified by assuming ideal boundary conditions. However, the dynamic behavior predicted on the basis of the simplified model may have significant errors. This has prompted the researchers to include the effect of joint stiffness in the structural model and to estimate the stiffness parameters using inverse dynamics. In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed for a two parameter joint stiffness matrix.

기관축계의 비선형 다자유도 강제 비틀림진동에 관한 연구 (A Study on the Non-linear Forced Torsional Vibration for Propulsion Shaftings with Multi-Degree-of-Freedom System)

  • 김수철;이문식;장민오;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.7-14
    • /
    • 2000
  • Nowadays, the viscous damper using high viscosity oil was much to be used for engine shafting system to reduce the excessive additional stress by torsional vibration. In general, it was assumed that the viscous damper could be modelled having only damping coefficient, that is to say, whose stiffness be ignored. But it is found that there exists a jump phenomenon, as a kind of non-linear vibration, in the actual engine shafting system with a damper of high viscosity. Therefore the damper ring and the casing are modelled as two mass elastic system with a complex viscosity. Also, to analyze a non-linear phenomenon, it is assumed that the viscous damper has a linear stiffness coefficient in proportion to the angular amplitude and a non-linear stiffness coefficient in proportion to cube of the angular amplitude. For the analysis, Quasi-Newton method with BFGS(Broyden-Fletcher-Goldfarb-Shanno) formula is used. Both calculated and measured values are provided in this paper which confirm the possibility of applying non-linear theory to engine shafting system with viscous damper.

  • PDF

비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도 (Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams)

  • 김문영;윤희택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

전단변형을 받는 비대칭 박벽 보-기둥 요소의 엄밀한 동적강도행렬 (Exact Dynamic Element Stiffness Matrices of Shear Deformable Nonsymmetric Thin-walled Beam-Columns)

  • 윤희택;박영곤;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.536-543
    • /
    • 2005
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬 (Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams)

  • 김남일;곽태영;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

초기하중을 받는 전단변형을 고려한 비대칭 박벽보의 엄밀한 동적 요소강도행렬 (Exact Dynamic Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Beams Subjected to Initial Forces)

  • 윤희택;김동욱;김상훈;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.435-442
    • /
    • 2001
  • Derivation procedures of exact dynamic element stiffness matrix of shear deformable nonsymmetric thin-walled straight beams are rigorously presented for the spatial free vibration analysis. An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The natural frequencies are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

축하중을 받는 비대칭 박벽 곡선보의 엄밀한 동적강도행렬 (Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Curved Beams Subjected to Axial Forces)

  • 윤희택;박영곤;김문영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.906-915
    • /
    • 2004
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using clement force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬 (Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams)

  • 윤희택;김문영;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF

박벽 곡선보의 엄밀한 탄성요소강도행렬 (Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam)

  • 김남일;윤희택;이병주;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF