• Title/Summary/Keyword: line roughness

Search Result 184, Processing Time 0.022 seconds

Effects of Repeated Instrumentation for Periodontal Therapy on the Marginal Portion of Artificial Crown (치주처치를 위한 기구들의 반복조작이 인공치관 변연부에 미치는 영향)

  • Kim, Jae-Ho;Yun, Gi-Yon;Choi, Kwang-Soo;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.443-455
    • /
    • 2000
  • The aim of periodontal therapy is a removal of a bacterial plaque butthe instrumentation for plaque control has two nature : removal of a bacterial plaque and increase of surface roughness. Complication of instrumentation is enable to damage to the root surface and artificial crown. Therefore this study was conducted to evaluate the effects of repeated instrumentation on the marginal portion of artificial crown. Fifteen proximal surfaces of ten extracted periodontally diseased maxillary first molars were used. The finish line was placed on the root surface, and then the crown was casted and cemented in usual manner. Three kinds of instruments: hand curet, ultrasonic scaler, and ultrasonic curet were used. After instrumentation, final polishing was done with rubber cup and pumice. And surface changes were evaluated by stereomicroscope and scannig probe microscope. Roughness was increased after instrumentation in all groups, and was decreased after polishing except ultrasonic scaler group. Roughness in the ultrasonic scaler group was lower than others, and roughness after polishing in the hand curet group was lower than others. These results indicate that polishing procedure is recommended, because periodontalinstruments increase the surface roughness and induce the irreversible damage to the marginal portion.

  • PDF

CLSM Analysis of Change in Roughness and Physical Properties of Granite after Freeze-Thaw Experiments (CLSM을 이용한 동결/융해 실험 후 화강암 시료의 표면 및 물성변화 분석)

  • Jeong, Jongtaek;Choi, Junghae;Chae, Byung-Gon;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • Freeze-thaw experiments were conducted to evaluate changes in surface roughness and physical properties in samples of granite from Ilgwang and Imki mines, Korea. The temperature range in the experiments was $-20^{\circ}C$ to $40^{\circ}C$, based on typical summer and winter temperatures in Korea, and the surface was observed every 20 cycles. One cycle comprised 1 hour of heating or cooling of the samples and 1 hour during which the target temperature was maintained. With increasing repetitions of the freeze-thaw experiment, porosity increased by 0.05%-0.15% in the two samples and the dry weight increased, whereas the volume of the soil and saturation weight decreased. Observations by confocal laser scanning microscope (CLSM) revealed that line and surface roughness parameters showed a tendency to increase and decrease, respectively, with elapsed time. Changes in surface roughness were apparent on the CLSM images.

Surface Characteristics of Anodized Ti-3wt%, 20wt%, and 40wt%Nb Alloys

  • Ko, Y.M.;Choe, H.C.;Jang, S.H.;Kim, T.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.143-147
    • /
    • 2009
  • In biomedical implants and dental fields, titanium has been widely utilized for excellent corrosion resistance and biocompatibility. However, Ti and its alloys are nonbioactive after being implanted in bone. In this study, for the purpose of improvement in biocompatibility the anodic $TiO_2$ layer on Ti-xNb alloys were fabricated by electrochemical method in phosphate solution, and the effect of Nb content on the pore size, the morphology and crystallinity of Ti oxide layer formed by the anodic oxidation method was investigated. The Ti containing Nb up to 3 wt%, 20 wt% and 40 wt% were melted by using a vacuum furnace. The sample were cut, polished, and homogenized for 24 hr at $1050^{\circ}C$ for surface roughness test and anodizing. Titanium anodic layer was formed on the specimen surface in an electrolytic solution of 1 M phosphoric acid at constant current densities ($30mA/cm^2$) by anodizing method. Microstructural morphology, crystallinity, composition, and surface roughness of oxide layer were observed by FE-SEM, XRD, EDS, and roughness tester, respectively. The structure of alloy was changed from $\alpha$-phase to $\beta$-phase with increase of Nb content. From XRD results, the structure of $TiO_2$ formed on the Ti-xNb surface was anatase, and no peaks of $Nb_2O_5$ or other Nb oxide were detected suggesting that Nb atoms are dispersed in $TiO_2$-based solid solution. Surface roughness test and SEM results, pore size formed on surface and surface roughness decreased as Nb content increased. From the line analysis results, intensity of Ti peak was high in the center of pore, whereas, intensity of O peak was high in the outside of pore center.

Evaluation of Circle Machining Surface Roughness on the Process Conditions using Neural Network (신경회로망을 이용한 가공조건에 따른 원형가공 표면거칠리 평가)

  • Sung, Baek-Sup;Kim, Ill-Soo;Cha, Yong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • The purpose of this study was to present the method to choose the optimization machining condition for the wire electric machine. This was completed by examining the ever-changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. To measure the precision of the machining surface, average values are obtained from 3 samples of measures of center-line average roughness by using a third dimension gauge and a stylus surface roughness gauge. In this experiment, we changed no-node voltage to 7 and 9, pulse-on-time to $6{\mu}s,\;8{\mu}s$ and $10{\mu}s$, pulse-off-time to $8{\mu}s,\;10{\mu}s$ and $13{\mu}s$, and experimented on wire tension at room temperature by 1000gf, 1200gf, and 1400gf, respectively.

Experimental Study on the Optimized Lubrication Conditions in MQL Turning of Workpieces with Taper Angle (테이퍼 각을 가진 소재의 MQL 선삭가공에서 최적 윤활 조건에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kang, Dong-Wi;Cha, Na-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Many researchers are trying to reduce the use of lubrication fluids in metal cutting to obtain safety, environmental and economical benefits. The aim of this study is to determine the optimization lubrication conditions in minimum quantity lubrication(MQL) turning of workpieces with taper angle. This study has been considered about various conditions of MQL. The objective functions are cutting force and surface roughness. Design factors are nozzle diameter, nozzle angle, MQL supply pressure, distance between tool and nozzle and length of supply line. The cutting force and surface roughness were statistically analyzed by the use of the Box-Behnken method. As a results, optimum lubrication conditions were suggested and verification experiment has been performed. The results of this study are expected to help the selection of lubrication conditions in MQL turning.

Investigation of friction effects between needles patterned using laser and elastomer (레이저에 의해 패터닝 된 바늘과 탄성중합체와의 마찰 효과)

  • Kim, Jae-Gu;Ro, Seung-Kook;Park, Jong-Kweon;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • The friction force of patterned needle in elastomer have been investigated to verify the application for bio and plastic industry. The micro pattern on the needle surface were prepared by 266 nm, 20 ns laser and 800 nm, 220 fs laser, which were able to generate the different surface roughness. The friction force was measured by the load cell of 10 N capacity. As the results, the friction force of no patterned needle is almost constant during the needle penetrates the silicone rubber sample. However, the needle having asperities shows the variation of the friction force. The higher the surface roughness is, the smaller the friction force is until the surface roughness is very high. In our experiment conditions, the reduction of the friction force by 20 % compared to no pattern needle was achieved with straight and $50{\mu}m$ discrete line generated by 266 nm, 20 ns laser.

  • PDF

UV/ozone Cleaning Processes for Organic Films on Si Studied by in-line XPS and AFM (in-line XPS와 AFM을 이용한 유기물의 UV/ozone 건식세정과정 연구)

  • 이경우;황병철;손동수;천희곤;김경중;문대원;안강호
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.261-269
    • /
    • 1995
  • 본 실험에서는 실리콘 웨이퍼 위에 photoresist(PR)와 octadecyltrichlorosilane(OST, CH3((CH2)17SiCI3)를 입혀서 UV/zone 처리를 어떻게 유기물질들이 UV/zone과 반응하여, 어떻게 표면에서 제거되는지를 in-line으로 연결된 XPS로 분석하고 반응시킨 표면들의 거칠기(roughness)를 AFM을 이용하여 관찰하였다. 실험결과 상온에서 UV/zone 처리를 했을 경우, PR과 OTS같은 유기물질이 표면에서 산화되는 것을 알 수 있었으나 이들이 제거되지 않고 표면에 그대로 남아있음을 알 수 있었다. 그러나 가열하면서(PR:$250^{\circ}C$, ORS:$100^{\circ}C$)UV/ozone 처리를 하였을 경우 표면에서 산화됨과 동시에 이들 산화물들이 표면에서 제거됨을 알 수 있었다. XPS 분석으로부터 이들의 산화반응물은 PR과 OTS 모두 -CH2-, -CH2O-, =C=O, -COO-를 가지는 것으로 나타났으며, 열에너지에 의해서 이들이 표면에서 제거되는 것으로 나타났다. AFM 분석결과는 상온에서 UV/ozone 처리를 하였을 경우에 표면의 거칠기가 적은 반면, 가열하면서 UV/o-zone처리를 하였을 경우에는 표면의 거칠기가 다소 증가하였다.

  • PDF

3D Modeling of Ground Surface with Statistical Method (통계적방법을 이용한 연삭표면의 3차원모델링)

  • 김동길;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • This paper simulated surface grinding process with statistically simulated grinding wheel topography, considering ridge formation phenomenon when grain scratch workpiece. Wheel grain is modeled as hybrid sphere and cone. Grinding wheel characteristic was evaluated with stylus by expanding the scanning region of the profilometer from a straight line to a plane. Each grain's diameter and semi-angle are assumed as normal distribution, each grain's protrusion height from wheel plane is assumed gamma distribution. So grinding wheel is simulated with grain's position randomly distributed without overlapping. Ground surface is 3-dimensionally simulated considering ridge formation of workpiece by each grain's cutting, and then surface profile and surface roughness parameters are compared with real ground workpiece.

  • PDF

Reliability Evaluation of STD-11 Cutting Surface on the Machined Condition using the Back-Propagation Neural Network (역전파 신경회로망을 이용한 가공조건에 따른 STD-11 절단면의 신뢰성 평가)

  • Kim Sun-Jin;Sung Back-Sub;Cho Gyu-Jae;Kim Ha-Sik;Ban Jae-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.7-15
    • /
    • 2004
  • The purpose of this study was to present the method to choose the optimum machining condition for the wire EDM. This was completed by examining the ever-changing quality of the material and by improving the function of the wire electric discharge machine. Precision metal mold products and the unmanned wire electric discharge machining system were used and then applied in industrial fields. This experiment uses the wire electric discharge machine with brass wire electrode of 0.25mm. To measure the precision of the machining surface, average values are obtained from 3 samples of measures of center-line average roughness by using a third dimension gauge and a stylus surface roughness gauge.

Assessment and Optimization of Cutting Parameters while Turning AISI 52100 Steel

  • Sharma, Vishal S.;Dhiman, Suresh;Sehgal, Rakesh;Sharma, Surinder Kumar
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.54-62
    • /
    • 2008
  • This investigation deals with machining AISI 52100 steel using a carbide-coated tool. The machining cutting force and tool tip temperature are measured online while turning using different cutting parameters. The surface roughness is also measured, but off-line after each cut. The obtained data are analyzed and the influence of the cutting parameters on the machining variables is determined in the form of plots. Regression models obtained from the results are tested using additional experimental data.