• Title/Summary/Keyword: line impedance

Search Result 936, Processing Time 0.026 seconds

Design of Tapered Line with Improved Chebyshev Function Removed Discontinuities (Chebyshev 함수에 의한 테이퍼형 선로의 설계에서 임피던스 불연속 제거에 관한 연구)

  • 이종빈;이상호;김상태;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • When the Chebyshev function is applied to design the waveguide transition, it exhibits poor impedance matching characteristics due to impedance discontinuities at the ends of tapered line. In this paper, an improved Chebyshev function, which is obtained by using the convolution property, is proposed to make improvements on the impedance matching characteristics of the waveguide transition. When rectangular to circular waveguide transition is designed by improved function, then the computed return loss is approximately 5 dB better than the conventional Chebyshev function.

  • PDF

Neural Network Compensation for Impedance Force Controlled Robot Manipulators

  • Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • This paper presents the formulation of an impedance controller for regulating the contact force with the environment. To achieve an accurate force tracking control, uncertainties in both robot dynamics and the environment require to be addressed. As part of the framework of the proposed force tracking formulation, a neural network is introduced at the desired trajectory to compensate for all uncertainties in an on-line manner. Compensation at the input trajectory leads to a remarkable structural advantage in that no modifications of the internal force controllers are required. Minimizing the objective function of the training signal for a neural network satisfies the desired force tracking performance. A neural network actually compensates for uncertainties at the input trajectory level in an on-line fashion. Simulation results confirm the position and force tracking abilities of a robot manipulator.

RFID Tag Antenna Coupled by Shorted Microstrip Line for Metallic Surfaces

  • Choi, Won-Kyu;Kim, Jeong-Seok;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.597-599
    • /
    • 2008
  • This letter presents the design of a small and low-profile RFID tag antenna in the UHF band that can be mounted on metallic objects. The designed tag antenna, which uses a ceramic material as a substrate, consists of a radiating patch and a microstrip line with two shorting pins for a proximity-coupled feeding structure. Using this structure, impedance matching can be simply obtained between the antenna and tag chip without a matching network. The fractional impedance bandwidth for $S_{11}$ <3 dB and radiation efficiency are about 1.4% and 56% at 911 MHz, respectively. The read range is approximately from 5 m to 6 m when the tag antenna is mounted on a metallic surface.

  • PDF

A Distance Relaying Algorithms Immune to Reactance Effect for Double-Circuit Transmission Line Systems (리액턴스 효과를 최소한 병행 2회선 송전선로 보호 거리계전 알고리즘)

  • 안용진;강상희;이승재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.38-44
    • /
    • 2001
  • For double-circuit transmission line systems, an accurate digital distance relaying algorithm immune to the reactance effect is proposed. The apparent impedance calculated by the distance relay is influenced by the combined reactance effect of the fault resistance and the load current as well as the mutual coupling effect caused by the zero-sequence current of the adjacent parallel circuit. To compensate the magnitude and phase of the estimated impedance, this algorithm uses phase angle difference between the zero(positive) sequence of the both side of the system seperated by the fault point. The impedance measuring algorithm presented used a current distribution factor to compensate mutual coupling effect instead of the collected zero-sequence current of the adjacent parallel circuit.

  • PDF

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Compact UWB Band-pass Filter with Open-Stub Using Impedance Mismatching and SIR (임피던스 부정합 및 SIR을 적용한 개방형 광대역 소형 스터브 대역통과 여파기)

  • Lee, Won-Seok;Yoon, Ki-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.282-289
    • /
    • 2014
  • In this paper, the UWB (Ultra Wide Band) band-pass filter (BPF) with compact-size using impedance mismatching in transmission line and SIR (Stepped Impedance Resonator) instead of open stubs is presented. The proposed BPF have 103 % of bandwidth and 11.2 GHz of center frequency, respectively. In additional, the operation frequencies of the suggested BPF are 4.8 GHz to 16 GHz. In this structure, the length of the transmission line is reduced to half compared with the original one by impedance mismatching technique with low frequency band (sub harmonics) and harmonic components. Also, the open stub can be used for SIR due to reduced size. Experimental results show that the insertion and return losses are 0.35 dB and 15.1 dB, respectively and the filter size is $8.92{\times}10.6mm^2$. The proposed BPF is in good agreement.

Characteristics of Linearly Tapered Coupled Strip-Line Filters (선형테이퍼 결합 Strip 선로의 여파특성)

  • 박기수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.2
    • /
    • pp.1-16
    • /
    • 1972
  • In this paper, the characteristics of linearly tapered strip-line filters, where the even-mode and odd-mode characteristic impedances vary linearly with the same degree along the lines, are analyzed. The Impedance parameters of linearly tapered coupled strip-line, which is made by connecting two linearly tapered unsymmetric coupled strip-lines In cascade and the I:no input and output terminals are made equal, are obtained. Using the above parameters, the Image parameters of linearly tapered coupled strip-line filters are derived. The result of analysis shows that the line length can be made shorter and also the stop-band width between the fundamental and second pass-band becomes wider, compared with the coupled strip-line filters which use uniform strip-lines. Furthermore, the difference of impedance levels in the fundsmental and second pass-band becomes larger with the degree of taper of the lines. This property is unique, in comparison with the case of uniform or exponentially tapered strip-line filters.

  • PDF

Branch line directional coupler with coupled lines (결합 선로를 이용한 브랜치 선로 방향성 결합기)

  • Han, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2011
  • Directional couplers are widely used in RF and microwave applications to distribute or monitor signals. This paper presented a new structure of microstrip branch line directional coupler with coupled lines. The loose couplings of microstrip branch line directional couplers are impractical for the high characteristic impedance values required for the shunt branches. To overcome this limitation, the parallel coupled lines with the shorts were used for the high characteristic impedance. The results of the simulations and measurements were presented for the proposed branch line directional coupler. Measurement of the 10 dB branch line directional coupler shows that the return loss is higher than 30 dB over 10 % bandwidth and the isolation is 35 dB or better over 8 % bandwidth.

Plasma 부하를 갖는 System에서의 Automatching 회로

  • Hwang, Gi-Ung;Kim, Won-Gyu;Lee, Seok-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.224-227
    • /
    • 1985
  • During operation of an RF glow discharge system, it can be observed that the reflected power tends to increase in small value, due to changes in the impedance of the system. This problem can be relieved by adding an automatic impedance matching circuit to the system. This paper presents a detailed method of automatically matching the input impedance of a 50 ohm transmission line to an RF glow discharge system at 13.56 MHZ.

  • PDF

FINITE-ELEMENT METHOD FOR THE IMPEDANCE ANALYSIS OF TRAVELING-WAVE MODULATORS

  • JONG CHANG YI
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.165-168
    • /
    • 1989
  • A finite-element method is developed to calculate the impedance of arbitrarily shaped electrodes on traveling-wave modulators. This method employs the divergence theorem to obtain the total charge on an electrode from the node potential values. By using this method, the impedance of multi strip-line electrodes on anisotropic inhomogeneous dielectric media was analysed and the effect of non-zero electrode thickness was calculated.

  • PDF