• Title/Summary/Keyword: limit state analysis

Search Result 650, Processing Time 0.037 seconds

Reliability-Based Safety and Capacity Evaluation of High-Speed Railroad Bridges (신뢰성에 기초한 고속철도 교량의 안전도 및 내하력평가)

  • 조효남;곽계환
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-143
    • /
    • 1997
  • In Korea, the construction of the first high-speed railroad on the Seoul-Pusan Corridor has already started 3 years ago, in the paper, an attempt is made to develop reliability-based safety and capacity evaluation models for the computer-aided maintenance of the high-speed railroad bridges. The strength limit state models of PC railroad bridges for reliability analysis encompass both the single failure mode such as bending or shear strength and the combined interaction equations which simultaneously take into account flexures, shear and torsion. Then, the actual load carrying capacity and the realistic safety of bridges are evaluated using the system reliability-based equivalent strength, and the results are compared with those of the element reliability based or conventional methods. It is concluded that the proposed models may be appropriately applied in practice for the realistic assessment of safety and capacity of high-speed railroad bridges.

  • PDF

THE USE OF DEEP SEDATION FOR THE DENTAL MANAGEMENT OF PEDIATRIC PATIENTS WITH DEFINITELY NEGATIVE BEHAVIOR (행동조절이 어려운 소아환자의 Deep sedation을 이용한 치과치료)

  • Um, Hye-Sook;Yoon, Hyung-Bae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.710-716
    • /
    • 1998
  • It is one of difficulties to control children who show definitely negative behavior in dental clinic. In such a case, the pharmacologic management has been used to provide quality care, minimize the extremes of disruptive behavior, promote a positive psychologic response to treatment and patient welfare and safety. Deep sedation can be defined as a controlled, pharmacologically-induced state of depressed consciousness from which the patient is not easily aroused which may be accompanied by a partial loss of protective reflexes. In this retrospective report, the sedation records of 200 pediatric dental patients of ASA Class I & II who were not successfully treated under conscious sedation were used for analysis. Most frequently used regimen of deep sedation was the co-medication of midazolam(0.3mg/kg), enflurane(1.0-2.0 vol%) and 50-70% $N_2O_2$. The average age and weight of the patients was 4.6 yr (S.D: 2.72) and 18.7kg(S.D: 6.35) respectively. The average operative time was 52 minutes and midazolam (0.1-0.2cc) was additionally administered intranasally to prolong the operative time as needed. The episodes of untoward side effects were reported during and/or after the procedure in 58 patients. Serious adverse reactions such as cyanosis or laryngospasm were even reported in 7 patients but without mortality. Deep sedation is a very effective way of completing the dental treatments for those who failed to respond well to the conscious sedation. This technique has many practical advantages over general anesthesia case but the demands for the rigid monitoring criteria limit its use in general practice setting. The continuous efforts to improve the safety of the medication and the technique are required for the benefits of the patients and parent.

  • PDF

Suggestion of the design guideline of the GFRP rebar (GFRP 보강근의 설계지침(안))

  • Sim, Jong-Sung;Park, Young-Hwan;Choi, Dong-Uk;Park, Seok-Kyun;Park, Cheol-Woo;Oh, Hong-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.899-902
    • /
    • 2008
  • The GFRP rebar have been interested as the substituting material of the conventional steel rebar to the concrete structure for high durable concrete structure. The GFRP rebar, however, has different way to be fabricated and mechanical characteristics comparing with the conventional steel rebar. Therefore, to apply the GFRP rebar to the construction field, it needs the proper and reasonable design theory, codes and guidelines. In this study, for the design recommendation of the GFRP rebar, ACI440.IR and ISIS Canada design manual were investigated and concluded that the design theory of ISIS Canada design manual was relatively better design concept considering the limit state of the GFRP rebar in design and analysis. With this design concept, new design equation for the GFRP rebar was suggested and investigated with other design equations.

  • PDF

Reliability Estimation and Dynamic Deformation of Polymeric Material Using SHPB Technique and Probability Theory (SHPB 기법과 확률이론을 이용한 고분자재료의 동적거동특성 및 건전성 평가)

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.740-753
    • /
    • 2008
  • The conventional Split Hopkinson Pressure Bar (C-SHPB) technique with aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene) to obtain more distinguishable experimental signals is used to obtain a dynamic behavior of material deformation under a high strain rate loading condition. An experimental modification with Pulse shaper is introduced to reduce the nonequilibrium on the dynamic material response during a short test period to increase the rise time of the incident pulse for two polymeric materials. For the dynamic stress strain curve obtained from SHPB experiment under high strain rate, the Johnson-Cook model is applied as a constitutive equation, and we verify the applicability of this constitutive equation to the probabilistic reliability estimation method. The methodology to estimate the reliability using the probabilistic method such as the FORM and the SORM has been proposed, after compose the limit state function using Johnson-Cook model. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM, and the failure probability increases with the increase of applied stress. Moreover, it is noted that the parameters of Johnson-Cook model such as A and n, and applied stress affect the failure probability more than the other random variables according to the sensitivity analysis.

Introduction to Thermoacoustic Models for Combustion Instability Prediction Using Flame Transfer Function (화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.98-106
    • /
    • 2011
  • This paper reviews the state-of-the-art thermoacoustic(TA) modeling techniques and research trend to predict major parameters determining combustion instabilities in lean premixed gas turbine combustors. Linear TA modeling results give us an information on eigenfrequencies and initial growth rate of the instabilities. For the prediction, linear relation equation between acoustic waves and heat release oscillations should be derived in the determined system. Key information for this analysis is to determine the heat release fluctuations in the combustor, which is typically obtained by using n-${\tau}$ function from flame transfer function measurements and/or predictions. Great advancement in the linear TA modeling has been made over a couple of decades, and some successful prediction results have been reported in actual gas turbine combustors. However nonlinear TA model developments which are required to analyze nonlinear system behaviors such as limit cycle saturation and transition phenomena are still limited in a very simple system. In order to fully understand combustion instabilities in a complicated real system, nonlinear flame dynamics and acoustic wave interaction with nonlinear system boundary conditions should be explained from the nonlinear TA model developments.

Seismic Fragility of Underground Utility Tunnels (지하 공동구 시설물의 지진취약도 분석)

  • Lee, Deuk-Bok;Lee, Chang-Soo;Shin, Dea-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • Damage of infrastructures by an earthquake causes the secondary damage through the world at large more than the damage of the structures themselves. Amomg them, underground utility tunnel structures comes under the special life line: communication, gas, electricity and etc. and it has a need to evaluate its fragility to an earthquake exactly. Therefore, the destruction ability according to peak ground acceleration of earthquakes for the underground utility tunnels is evaluated in this paper. As an input ground motion for evaluating seismic fragilities, real earthquakes and artificial seismic waves which could be generated in the Korean peninsula are used. And as a seismic analysis method, response displacement method and time history analyzing method are used. An limit state which determines whether destruction is based on the bending moment and shear deformation. A method used to deduct seismic fragility curve is method of maximum likelihood and the distribution function is assumed to the log normal distribution. It could evaluate the damage of underground utility tunnels to an earthquake and could be applied as basic data for seismic design of underground utility tunnel structures.

Development of safety-Based Guidelines for Cost-Effective Utility Pole Treatment along Highway Rights-of-Way

  • 김정현
    • Proceedings of the KOR-KST Conference
    • /
    • 1997.12a
    • /
    • pp.33-69
    • /
    • 1997
  • This study was conducted to develop a methodology to predict utility pole accident rates and to evaluate cost-effectiveness for safety improvement for utility pole accidents. The utility pole accident rate prediction model was based on the encroachment rate approach introduced in the Transportation Research Board Special Report 214. The utility pole accident rate on a section of highway depends on the roadside encroachment rate and the lateral extent of encroachment. The encroachment rate is influenced by the horizontal and vertical alignment of the highway as well as traffic volume and mean speed. The lateral extent of encroachment is affected by the horizontal and vertical alignment, the mean speed and the roadside slope. An analytical method to generate the probability distribution function for the lateral extent of encroachment was developed for six kinds of encroachment types by the horizontal alignment and encroachment direction. The encroachment rate was calibrated with the information on highway and roadside conditions and the utility pole accident records collected on the sections of 55mph speed limit of the State Trunk Highway 12 in Wisconsin. The encroachment rate on a tangent segment was calibrated as a function of traffic volume with the actual average utility pole accident rates by traffic volume strategies. The adjustment factors for horizontal and vertical alignment were then derived by comparing the actual average utility pole accident rates to the estimations from the model calibrated for tangent and level sections. A computerized benefit-cost analysis procedure was then developed as a means of evaluating alternative countermeasures. The program calculates the benefit-cost ratio and the percent of reduction of utility pole accidents resulting from the implementation of a safety improvement. This program can be used to develop safety improvement: alternatives for utility pole accidents when a predetermined performance level is specified.

  • PDF

The ground reaction curve of underwater tunnels considering seepage forces (침투력을 고려한 터널의 지반반응곡선)

  • Shin, Young-Jin;Kim, Byoung-Min;Shin, Jong-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.183-204
    • /
    • 2007
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. Such seepage forces significantly affect the ground reaction curve which is defined as the relationship between internal pressure and radial displacement of tunnel wall. In this paper, seepage forces arising from the ground water flow into a tunnel were estimated quantitatively. Magnitude of seepage forces was decided based on hydraulic gradient distribution around tunnel. Using these results, the theoretical solutions of ground reaction curve with consideration of seepage forces under steady-state flow were derived. A no-support condition and a supported condition with grouted bolts and shotcrete lining were considered, respectively. The theoretical solution derived in this study was validated by numerical analysis. The changes in the ground reaction curve according to various cover depths and groundwater table conditions were investigated. Based on the results, the application limit of theoretical solutions was suggested.

  • PDF

Factors Influencing Cost Overruns in Construction Projects of International Contractors in Vietnam

  • VU, Thong Quoc;PHAM, Cuong Phu;NGUYEN, Thu Anh;NGUYEN, Phong Thanh;PHAN, Phuong Thanh;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.389-400
    • /
    • 2020
  • A construction project is a designed product made up of labors, materials, and installations in the project positioned on the ground and may include the underground and ground section, and the section in water or on the water surface. It is a civil, industrial, transport, agricultural and rural development, infrastructure, or some other. A key phase in the life cycle of these construction projects is the implementation when building products are made directly with workers, equipment, materials, and managers. If there is a lack of management experience, information, and problem-solving solutions to tackle the risks faced by contractors, especially foreign ones, will fail in controlling the project's cost. This study was conducted with investigations, discussions, and evaluation of the factors that lead to cost overruns in the construction projects of international contractors in Vietnam. The principal component analysis (PCA) showed that those factors that influence cost overruns these construction projects fall into five general groups, including factors related to (i) the owners, (ii) the foreign contractors, (iii) the subcontractors and suppliers, (iv) state management, and (v) the project itself. Besides, the study proposes solutions to limit cost overruns in construction projects and improve the profitability of international contractors in Vietnam.

Trend Analysis and Market Expansion Strategies for Overseas Civil and Architectural Projects (해외건설 토목 ${\cdot}$ 건축분야 수주패턴 분석 및 시장확대 전략에 관한 연구)

  • Choe, Seok-Jin;Kim, Du-Yeon;Han, Seung-Heon;Kim, Hyeong-Gwan
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.408-413
    • /
    • 2006
  • Recently, the economic trend of internal enterprises toward the world market appears to exceedingly associate with industrial plants. Such circumstance would limit the diversity of project items and cause various issues of extreme disproportion of overseas construction market at the same time. Consequently, it seems essential to inspect the present state of bookings in the civil engineering and construction fields including the service corps, regarding the former period (from the year 1990 to 1996), the depressed period (from 1997 to 2000), and the latter period of monetary crisis (from 2001 to July 2006), based on the critical situation in foreign exchange occurred in the late 1990's; also important to look into the shifts of the representative items in such fields by regional groups of principal nations throughout the world. Therefore, the current situation of bookings in overseas construction companies should be clarified, and ultimately, appropriate measures should be established.

  • PDF