DOI QR코드

DOI QR Code

Seismic Fragility of Underground Utility Tunnels

지하 공동구 시설물의 지진취약도 분석

  • 이득복 (서울시립대학교 토목공학과) ;
  • 이창수 (서울시립대학교 토목공학과) ;
  • 신대섭 (서울시립대학교 토목공학과)
  • Received : 2016.07.13
  • Accepted : 2016.07.18
  • Published : 2016.10.30

Abstract

Damage of infrastructures by an earthquake causes the secondary damage through the world at large more than the damage of the structures themselves. Amomg them, underground utility tunnel structures comes under the special life line: communication, gas, electricity and etc. and it has a need to evaluate its fragility to an earthquake exactly. Therefore, the destruction ability according to peak ground acceleration of earthquakes for the underground utility tunnels is evaluated in this paper. As an input ground motion for evaluating seismic fragilities, real earthquakes and artificial seismic waves which could be generated in the Korean peninsula are used. And as a seismic analysis method, response displacement method and time history analyzing method are used. An limit state which determines whether destruction is based on the bending moment and shear deformation. A method used to deduct seismic fragility curve is method of maximum likelihood and the distribution function is assumed to the log normal distribution. It could evaluate the damage of underground utility tunnels to an earthquake and could be applied as basic data for seismic design of underground utility tunnel structures.

지진시 사회 인프라시설물의 피해는 시설물 자체의 피해보다 사회 전반에 걸친 2차 피해를 야기한다. 그 중, 지하 공동구 구조물은 통신, 가스, 전기 등 사회의 라이프라인에 해당하여 지진에 대한 취약성을 정확히 평가하여야 할 필요가 있다. 따라서, 본 연구에서는 지하 공동구의 지진 발생 지반가속도에 따른 파괴가능성을 평가하였다. 평가를 위한 입력지반운동은 해외 실측 지진데이터와 한반도에서 발생가능한 인공지진파를 차용하였으며, 지진해석 방법은 응답변위법과 시간이력해석법을 사용하였다. 파괴여부를 판별하는 한계상태는 휨모멘트와 전단 파괴를 바탕으로 하였다. 취약도 함수 도출을 위한 방법은 최우도법이 사용되었으며, 그 분포함수는 대수정규분포로 가정하였다. 이는 지진시 지하 공동구 시설물의 피해 평가는 물론 지하 공동구 시설물의 내진설계를 위한 기초자료로 활용될 수 있다.

Keywords

References

  1. Faccioli, E., Pessina, V., Calvi, G.M., Borzi B. (1999) A Study on Damage Scenarios for Residential Buildings in Catania City, J. Seismol., 3, pp.327-343. https://doi.org/10.1023/A:1009856129016
  2. Han, S.R., Lee, H.D., Lee. C.S. (2016) Seismic Fragility of Underground Utility Tunnels Considering Probabilistic Site Response Analysis, J. Korean Soc. Hazard Mitig., 16(3), pp.31-37. https://doi.org/10.9798/KOSHAM.2016.16.3.31
  3. Hus, C.C., Lai, M.C., Sung, Y.C., Tsai, I.C., (2008) Rapid Seismic Damage Assessment System of Existing Bridges in Taiwan, The Twenty-First KKCNN Symposium on Civil Engineering, Singapore.
  4. Hwang, H., Huo, J. R. (1998) Probabilistic Seismic Damage Assessment of Highway Bridges, 6th US National Conference on Earthquake Engineering, Seattle, WA.
  5. Lee, C. S. (2015) Development of Seismic Fragilities for Urban Infrastructure Network, National Emergency Management Agency of Korea.
  6. Ministry of Land, Transport and Maritime Affairs (2010) Utility-Pipe Conduit design Standard, Ministry of Land, Infrastructure and Transport.
  7. Park, D.H., Kwak, D.Y., Jeong, C.G. (2009) Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part I: Application and Verification of a Novel Probabilistic Seismic Hazard Analysis Procedure, J. Korean Geo-Environ. Soc., 10(7), pp.103-109.
  8. Shinozuka, M., Feng, M.Q., Lee, J., Naganuma, T. (2000) Statistical Analysis of Fragility Curve, ASCE J. Eng. Mech., 126(12), pp.1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  9. Shinozuka, M., Takada, S., Ishikawa, H. (1979) Some Aspects of Seismic Risk Analysis of Underground Lifeline Systems, ASME J. Press. Vessel Tech., 101, pp.31-43. https://doi.org/10.1115/1.3454596