• Title/Summary/Keyword: lignocellulosic fuel

Search Result 28, Processing Time 0.03 seconds

Bioethanol Production Using Lignocellulosic Biomass-review Part 2. Saccharification and fermentation of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.15-23
    • /
    • 2010
  • Bio-ethanol is the most potential next generation automotive fuel for reducing both consumption of crude oil and environmental pollution from renewable resources such as wood, forest residuals, agricultural leftovers and urban wastes. Lignocellulosic based materials can be broken down into individual sugars. Therefore, saccharification is one of the important steps for producing sugars, such as 6-C glucose, galactose, mannose and 5-C xylose, mannose and rhamnose. These sugars can be further broken down and fermented into ethanol. The main objective of this research is to study the feasibility and optimize saccharification and fermentation process for the conversion of lignocellulosic biomass to low cost bioethanol.

Ethanol Production from Lignocellulosic Biomass by Simultaneous Saccharification and Fermentation Employing the Reuse of Yeast and Enzyme

  • KIM, JUN-SUK;KYUNG-KEUN OH;SEUNG-WOOK KIM;YONG-SEOB JEONG;SUK-IN HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • Simultaneous saccharification and fermentation (SSF) experiments were carried out with a lignocellulosic biomass. The effects of temperature on enzymatic saccharification and the ethanol fermentation were also investigated. The batch SSF process gave a final ethanol concentration of 10.44 g/l and equivalent glucose yield of 0.55 g/g, which was increased by 67% or higher over the saccharification at 42℃. The optimal operating condition was found to vary in several parameters, such as the transmembrane pressure, permeation rate, and separation coefficient, related to the SSF combined with membrane system (semi-batch system). When the fermentation was operated in a semi-batch mode, the efficiency of the enzymes and yeast lasted three times longer than in a batch mode.

  • PDF

Bioconversion of Lignocellulose Materials

  • Pothiraj, C.;Kanmani, P.;Balaji, P.
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.159-165
    • /
    • 2006
  • One of the most economically viable processes for the bioconversion of many lignocellulosic waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignocellulosic as growth substrate. Examination of the lignocellulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and ${\beta}-glucosidases$, but very low level of recognized lignin degrading enzymes.

Properties of Mortar mixed with Lignocellulosic Combustion By-products (목질계 연소부산물 혼입 모르타르 물성 평가)

  • Jeong, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.77-78
    • /
    • 2023
  • This paper experimentally examined the recycling of combustion by-products emitted from a combined heat and power plant using lignocellulosic biomass fuel. Physical and chemical analyzes were performed on Bio-SRF and three types of wood pellet combustion by-product samples (fly-ash, FA). As a result of the experiment, the compressive strength of mortar substituted with 5, 10, and 20% of FA compared to the cement weight was found to be excellent, and its recyclability was confirmed as a substitute for existing admixtures.

  • PDF

Investigative Analysis of By-products from Lignocellulosic Biomass Combustion and Their Impact on Mortar Properties (목질계 바이오매스 연소부산물 분석과 모르타르 혼입 평가)

  • Jung, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.663-671
    • /
    • 2023
  • This research experimentally evaluated the recyclability of four varieties of lignocellulosic fly ash(FA), a by-product from three power plants employing lignocellulosic biomass(Bio-SRF, wood pellets) as a fuel source. Comprehensive analyses were conducted on FA, encompassing both physical parameters (particle shape, size distribution, fineness, and density) and chemical properties(chemical composition and heavy metal content). Mortar test specimens, with FA mixing ratios ranging from 5 to 20%, were produced in compliance with KS L 5405 standards, and their flow and compressive strength were subsequently measured. The test results indicated that the four types of FA exhibited particle sizes approximately between 20~30㎛, densities around 2.3~2.5g/cm3, and a fineness range of 2,600~4,900cm2/g. The FA comprised approximately 50~90% of components such as SiO2, Al2O3, Fe2O3, and CaO, displaying characteristics akin to type-II and type-III FA of KS L 5405 standards, albeit with differences in chlorine and SiO2 content. From the mortar tests, it was observed that the compressive strength of the mortar ranged between 34~47MPa when the pellet combustion FA was mixed in proportions of 5~20%. FA, produced exclusively from the combustion of 100% lignocellulosic fuel, is assessed to possess high recyclability potential as a substitute for conventional admixtures.

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

  • Kaoplod, Watcharasorn;Chaijak, Pimprapa
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.122-125
    • /
    • 2022
  • The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.

Wood pelletizing using pine root waste biomass - different pelletizing properties between trunk and root biomass of Pinus densiflora (소나무 뿌리 폐기물을 이용한 목질 펠릿 제조 - 목부와 뿌리로 제조한 펠릿의 특성 비교)

  • Shin, Soo-Jeong;Han, Gyu-Seong;Myeong, Soo-Jeong;Cho, Jung-Sik;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.71-73
    • /
    • 2008
  • Different biosolid fuel (wood pellet) properties between trunk and root of pine (Pinus densiflora) biomass were investigated. Trunk has more organic solvent extracts and Klason lignin content which has higher heating values than root biomass component. In root biomass, polysaccharides content was higher than trunk biomass. Based on Higher Heating Value (HHD) analysis and ash content, trunk biomass showed better solid fuel characteristics than root biomass. But pine root biomass had lower HHD than trunk biomass, its HHD values were higher than other hardwood or annual plant lignocellulosic biomass.

  • PDF

A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.144-154
    • /
    • 2016
  • This review will be concentrated on the spray characteristics of biobutanol and its blends fuels in internal combustion engines including compression ignition, spark ignition and gas turbine engines. Butanol can be produced by fermentation from sucrose-containing feedstocks, starchy materials and lignocellulosic biomass. Among four isomers of butanol, n-butanol and iso-butanol has been used in CI and SI engines. This is due to higher octane rating and lower water solubility of both butanol compared with other isomers. The researches on the spray characteristics of neat butanol can be classified into the application to CI and SI engines, particularly GDI engine. Two empirical correlations for the prediction of spray angle for butanol as a function of Reynolds number was newly suggested. However, the applicability for the suggested empirical correlation is not yet proved. The butanol blended fuels used for the investigation of spray characteristics includes butanol-biodiesel blend, butanol-gasoline blend, butano-jet A blend and butanol-other fuel blends. Three blends such as butanol/ethanol, butanol/heptane and butanol/heavy fuel oil blends are included in butanol-other fuel blends. Even though combustion and emission characteristics of butanol/diesel fuel blend in CI engines were broadly investigated, study on spray characteristics of butanol/diesel fuel blend could not be found in the literature. In addition, the more study on the spray characteristics of butanol /gasoline blend is required.