• Title/Summary/Keyword: lignocellulose nanofiber

Search Result 5, Processing Time 0.02 seconds

Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite (국산 잣나무 유래 리그노셀룰로오스 나노섬유 제조 및 이를 이용한 강화 폴리우레탄 나노복합재료)

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.700-707
    • /
    • 2014
  • The effect of steam and ozone pretreatments on fibrillation efficiency by wet disk-milling was investigated. Hemicellulose (40%) and lignin (42%) of Korean white pine were partially removed by steam and ozone pretreatments, respectively. With increasing wet disk-milling time, the diameter of fibers was significantly decreased and its size distribution became narrow. Especially, the average diameters of lignocellulose nanofibers after steam and ozone pretreatments were 19 nm and 12 nm, respectively. Thus-obtained lignocellulose nanofibers-reinforced polyurethane composite was prepared. Tensile strength and elastic modulus were drastically improved with increasing wet disk-milling time and lignocellulose nanofiber content. Nanocomposite reinforced by lignocellulose nanofibers after two pretreatments showed higher tensile properties, compared to that reinforced by lignocellulose nanofiber without pretreatment, at the similar wet disk-milling time.

Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber (각종 셀룰로오스 나노섬유의 첨가가 닥나무 인피섬유 시트의 특성에 미치는 영향)

  • Han, Song-Yi;Park, Chan-Woo;Kim, Bo-Yeon;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.730-739
    • /
    • 2015
  • Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.

Effect of Enzymatic Hydrolysis of Cellulose Nanofibers on the Properties of Poly (Vinyl Alcohol) Nanocomposite

  • Han, Song-Yi;Park, Chan-Woo;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.154-159
    • /
    • 2017
  • Enzymatic treatment was conducted to hydrolyze pure cellulose nanofiber (PCNF), holocellulose nanofiber (HCNF), and lignocellulose nanofiber (LCNF) for 6, 24 and 72 hours and thus-obtained nanofibers (1, 3, 5, 10 wt%) were used to reinforce polyvinyl alcohol (PVA). Glucose production yield was increased by enzymatic hydrolysis. Tensile strength and elastic modulus of all PVA nanocomposite reinforced three nanofibers were improved by increasing enzymatic hydrolysis time of nanofibers and these values were higher in order of nanocomposite reinforced with PCNF>HCNF>LCNF. Furthermore, tensile properties of nanocomposite with PCNF were increased by nanofiber content. Thermal stability of PVA was improved by adding nanofibers and by increasing nanofiber content.

Preparation of Lignocellulose Nanofiber by Mechanical Defibrillation After Pretreatment Using Cosolvent of Ionic Liquid and DMF (이온성 액체/DMF 혼합용매 전처리 후 기계적 해섬을 통한 리그노셀룰로오스 나노섬유의 제조)

  • Han, Song-Yi;Park, Chan-Woo;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.268-277
    • /
    • 2017
  • In this study, lignocellulose nanofibrils (LCNFs) were prepared from Pussy willow wood powder by disk-milling after pretreatment using the cosolvent of 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) and N,N-dimethylformamide (DMF) with different mixing ratios for different time. All pretreated samples showed native cellulose I polymorph and cellulose crystallinity was lowest when cosolvent of DMF with 30% [EMIM]Ac was used. Average crystallite size of raw material and the pretreated product by MDF and its cosolvent with 10% [EMIM]Ac was found to be about 3.2 nm and decreased with increasing pretreatment time at the DMF cosolvent with 30% [EMIM]Ac. Defibrillation efficiency was improved by loosening wood cell wall structure by the pretreatment using co-solvent system of [EMIM]Ac and DMF.

Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers (잣나무 유래 리그노셀룰로오스 나노섬유 및 나노종이 특성에 미치는 탈리그닌의 영향)

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • This study was carried out to investigate the effect of delignification on properties of lignocellulose nanofibers (LCNFs) prepared by wet disk-milling (WDM) after steam and ozone oxidation pre-treatments and their nanopaper sheets. Delignification treatment was effective to obtain fine morphology with uniform fiber diameter less than 35 nm without aggregation, and increased the specific surface area (SSA) and filtration time of LCNFs. In particular, SSA and filtration time of the LCNFs prepared by WDM after ozone pretreatment increased 1.5 and 5.4 times after further delignification. Delignification also increased whiteness and decreased the redness of nanopaper sheets. The highest color difference (41.9) before and after the delignification was obtained in LCNFs prepared by WDM after the steam pretreatment. Tensile properties of nanopaper sheets were also increased by further delignification. The highest tensile strength was found to be 142 MPa.