Browse > Article
http://dx.doi.org/10.5658/WOOD.2014.42.6.700

Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite  

Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University)
Lee, Seung-Hwan (College of Forest & Environmental Sciences, Kangwon National University)
Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.42, no.6, 2014 , pp. 700-707 More about this Journal
Abstract
The effect of steam and ozone pretreatments on fibrillation efficiency by wet disk-milling was investigated. Hemicellulose (40%) and lignin (42%) of Korean white pine were partially removed by steam and ozone pretreatments, respectively. With increasing wet disk-milling time, the diameter of fibers was significantly decreased and its size distribution became narrow. Especially, the average diameters of lignocellulose nanofibers after steam and ozone pretreatments were 19 nm and 12 nm, respectively. Thus-obtained lignocellulose nanofibers-reinforced polyurethane composite was prepared. Tensile strength and elastic modulus were drastically improved with increasing wet disk-milling time and lignocellulose nanofiber content. Nanocomposite reinforced by lignocellulose nanofibers after two pretreatments showed higher tensile properties, compared to that reinforced by lignocellulose nanofiber without pretreatment, at the similar wet disk-milling time.
Keywords
lignocellulose nanofiber; steam; ozone oxidation; wet disk-mill; Korean white pine;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Abe, K., Sasaki, T., Kokusho T., Shibata M., Uemura, Y., Hatate, Y. 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolucules. 8: 3276-3278.   DOI   ScienceOn
2 Ando, H., Sakaki, T., Kokusho, T., Shibata, M., Uemura, Y., Hatate, Y. 2000. Decomposition behavior of plant biomass in hot-compressed water. Industrial and Engineering Chemistry Research. 39: 3688-3693.   DOI   ScienceOn
3 Barros, R.R.O., Paredes, R.S., Endo, T., Bon, E.P.S., Lee, S.H. 2013. Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresources Technology. 136: 288-294.   DOI   ScienceOn
4 Chun, S.J., Choi, E.S., Lee, E.H., Kim, J.H., Lee, S.Y., Lee, S.Y. 2012. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry. 22: 16618-16626.   DOI   ScienceOn
5 Bondeson, D., Mathew, A., Oksman, K. 2009. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose. 13: 171-180.
6 Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Science and Technology 46: 393-403.   DOI
7 Cherian, B.M., Leão, A.L., Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M. 2010. Isolation of nanocellulose from pineapple leaf fibers by steam explosion. Carbohydrate Polymers. 81: 720-725.   DOI   ScienceOn
8 Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., Souza, S.F., Kottaisamy, M. 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresources Technology. 102: 1988-1997.   DOI   ScienceOn
9 Gratzl, J.S. 1992. Die chemischen Grundlagen der Zellstoffbleiche mit Sauerstoff, Wasserstoffperoxid und Ozon-ein kurzer Uberblick. Das Papier 46(10A): V1-V8.
10 Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofibers from domestic platation resources. Journal of the Korean Wood Sciences and Technology. 40(3): 156-163.   DOI   ScienceOn
11 Japanese Standards Association. 1999. Testing method for tensile properties of plastic films & sheets. JIS K 7127: 1999 (ISO 527-3: 1995).
12 Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology. 47: 925-937.   DOI   ScienceOn
13 Jang, J.H., Lee, S.H., Kim, N.H. 2014. Effect of pMDI as coupling agent on the properties of microfibrillated cellulose-reinforced PBS nanocomposite. Journal of the Korean Wood Sciences and Technology. in press.   과학기술학회마을   DOI   ScienceOn
14 Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J., Liu, Y. 2012. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenizer. Carbohydrate. Polymers. 90: 1609-1613.   DOI   ScienceOn
15 Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresources Technology. 101(19): 7218-7223.   DOI   ScienceOn
16 Lemeune, S., Jameel, H., Chang, H.M., Kadla, J.F. 2004. Effects of ozone and chlorine dioxide on the chemical properties of cellulose fibers. Journal of Applied Polymer Science. 93: 1219-1223.   DOI   ScienceOn
17 Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of the Korean Wood Sciences and Technology. 42(2): 119-129.   과학기술학회마을   DOI   ScienceOn
18 Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., Dufresne, A. 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal. 44: 2489-2498.   DOI   ScienceOn
19 Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O. Lindstrom, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8: 1934-1941.   DOI   ScienceOn
20 Renneckar, S., Zink-sharp, A., Esker, A.R., Johnson, R.K., Glasser, W.G. 2006. Cellulose Nanocomposites: Processing, Characterization and Properties, ACS Symposium Series 938, Ed. by Oksman, K. Sain, M., American Chemical Society, Washington DC, USA. pp. 78-96.
21 Wise, L.E., Murphy, M., Addieco, A.A. 1946. Isolation of holocellulose from wood. Paper Trade Journal. 122: 35-43.
22 Saito, T., Kimura, S., Nishiyama, Y. Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecule. 8: 2485-2491.   DOI   ScienceOn
23 Seydibeyoglu, M. O., Oksman, K. 2008. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology. 68: 908-914.   DOI   ScienceOn
24 Wang, S., Cheng, Q. 2009. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. Journal of Applied Polymer Science. 113(2): 1270-1275.   DOI   ScienceOn
25 Zhang, Y., Kang, G., Ni, Y., van Heiningen, A.R.P. 1997. Degradation of carbohydrate model compounds during ozone treatment. Journal of Pulp and Paper Science. 23(1): J23-J27.
26 Zimmermann, T., Bordeanu, N., Sturb, E. 2010. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers. 79: 1086-1093.   DOI   ScienceOn