Browse > Article
http://dx.doi.org/10.5658/WOOD.2015.43.6.730

Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber  

Han, Song-Yi (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Park, Chan-Woo (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Kim, Bo-Yeon (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.43, no.6, 2015 , pp. 730-739 More about this Journal
Abstract
Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.
Keywords
paper mulberry bast fiber; cellulose nanofiber; lignocellulose nanofiber; holocellulose nanofiber; TEMPO-oxidated nanofiber; cellulose nanocrystal;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87: 963-979.   DOI
2 Abitbol, T., Kloser, E. Gray, D.G. 2013. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2): 785-794.   DOI
3 Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., Doublier, J.L. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydrate Polymers 80: 677-686.   DOI
4 Azeredo, H.M.C. 2009. Nanocomposites for food packaging applications. Food Research International 42: 1240-1253.   DOI
5 Cherian, B.M., Leao, A.L., Souza, S.F., Costa, L.M.M., Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R., Thomas, S. 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 86: 1790-1798.   DOI
6 Choi, T.H., Cho, N.S. 1996. New korean traditional papermaking from paper mulberry (I) - Pulping characteristics of Broussonetia kazinoki Siebold -, Journal of Korea TAPPI 28(1): 49-59.
7 Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65.   DOI
8 Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A. 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10: 162-165.   DOI
9 Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.   DOI
10 Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9: 1579-1585.   DOI
11 Isogai, A. 2013. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59: 449-459.   DOI
12 Iwamoto, S., Nakagaito, A.N., Yano, H. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 89: 461-466.   DOI
13 Iwamoto, S., Yamamoto, S., Lee, S.H., Ito, H., Endo, T. 2014. Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7: 6919-6929.   DOI
14 Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., Sheltami, R. M. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fiber. Cellulose 19: 855-866.   DOI
15 Kwon, O.H., Kim, H.C. 2011. Preliminary study on automation of bark peeling process for paper mulberry, Journal of Korea TAPPI 43(4): 59-66.
16 Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology 101: 7218-7223.   DOI
17 Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764.   DOI
18 Lee, H.V., Hamid, S.B.A., Zain, S.K. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal 2014: 1-20.
19 Lee, M.G., Yun, S.R., Kim, M.J. 2006. Dyeing of Hanji using Kenaf and improvement of printability. Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference 10: 233-239.
20 Lee, S.H., Inoue, S., Teramoto, Y., Endo, T. 2010. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: Effect of hot-compressed water treatment. Bioresource Technology 101: 9645-9649.   DOI
21 Li, M.C., Wu, Q., Song, K., Qing, Y., Wu, Y. 2015. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl. Mater. Interfaces 7: 5006-5016.   DOI
22 Lu, P., Hsieh, Y.L. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers 82: 329-336.   DOI
23 Nogi, M., Yano, H. 2008. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20: 1849-1852.   DOI
24 Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cai, Z., Wu, Y. 2013. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers 97: 226-234.   DOI
25 Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Composites Science and Technology 71(10): 1342-1347.   DOI
26 Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. J. Korean Wood Sci. Technol. 43(1): 17-24.   DOI
27 Park, S.C., Lim, H.A., Oh, S.W. 2014. Study of functional of hanji using ceramic from Broussonetia kazinoki Sieb. Journal of Agriculture & Life Science 48(3): 53-61.   DOI
28 Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8: 2485-2491.   DOI
29 Salas, C., Nypelo, T., Rodriquez-Abreu, C., Carrillo, C., Rojas, O.J. 2014. Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science 19: 383-396.   DOI
30 Siqueira, G., Bras, J., Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765.   DOI
31 Siro, I., Plackett, D. 2010. Microfibrillated cellulsoe and new nanocomposite materials: A review. Cellulose 17: 459-494.   DOI
32 Yoon, S.L., Kim, H.J. 2002. Manufacturing of color hanji using bast fibers stained dyed by two reactive dyes. Journal of Korea TAPPI 34(4): 44-50.