Browse > Article
http://dx.doi.org/10.5658/WOOD.2017.45.3.268

Preparation of Lignocellulose Nanofiber by Mechanical Defibrillation After Pretreatment Using Cosolvent of Ionic Liquid and DMF  

Han, Song-Yi (Department of Forest Biomaterials Engineering, Kangwon National University)
Park, Chan-Woo (Department of Forest Biomaterials Engineering, Kangwon National University)
Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.45, no.3, 2017 , pp. 268-277 More about this Journal
Abstract
In this study, lignocellulose nanofibrils (LCNFs) were prepared from Pussy willow wood powder by disk-milling after pretreatment using the cosolvent of 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) and N,N-dimethylformamide (DMF) with different mixing ratios for different time. All pretreated samples showed native cellulose I polymorph and cellulose crystallinity was lowest when cosolvent of DMF with 30% [EMIM]Ac was used. Average crystallite size of raw material and the pretreated product by MDF and its cosolvent with 10% [EMIM]Ac was found to be about 3.2 nm and decreased with increasing pretreatment time at the DMF cosolvent with 30% [EMIM]Ac. Defibrillation efficiency was improved by loosening wood cell wall structure by the pretreatment using co-solvent system of [EMIM]Ac and DMF.
Keywords
ionic liquid; organic solvent; lignocellulose nanofibrils; disk-milling;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Galland, S., Berthold, F., Prakobna, K., Berglund, L.A. 2015. Holocellulose nanofibers of high molar mass and small diameter for high-strength nanopaper. Biomacromolecules 16(8): 2427-2435.   DOI
2 Brandt, A., Grasvik, J., Hallett, J.P., Welton, T. 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry 15: 550-583.   DOI
3 Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S. 2011. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research 2011: 1-17.
4 Gomes, F.J.B., Santos, F.A., Colodette, J.L., Demuner, I.F., Batalha, L.A.R. 2014. Literature review on biorefinery processes intergrated to the pulp industry. Natural Resources 5: 419-432.   DOI
5 Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.   DOI
6 Han, S.Y., Park, C.W., Kim, N.H., Lee, S.H. 2017. Co-solvent system of [EMIM]Ac and DMF to improve the enzymatic saccharification of pussy willow (Salix gracilistyla Miq.). Holzforschung 71(1): 43-50.
7 Han, S.Y., Park, C.W., Kim, B.Y., Lee, S.H., 2015. Effect of the addition of various cellulose nanofibers on the properties of sheet of paper mulberry bast fiber. Journal of the Korean Wood Science and Technology 43(6): 730-739.   DOI
8 Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6): 1579-1585.   DOI
9 Iwamoto, S., Nakagaito, A.N., Yano, H. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A 89(2): 461-466.   DOI
10 Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofibers from domestic plantation resources. Journal of the Korean Wood Science and Technology 40(3): 156-163.   DOI
11 Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology 47(5): 925-937.   DOI
12 Kumagai, A., Lee, S.H., Endo, T. 2013. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Biomacromolecules 14(7): 2420-2426.   DOI
13 Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Averous, L., Njuguna, J., Nassiopoulos, E. 2011. Cellulose-based bio- nanocomposites: A review. International Journal of Polymer Science 2011: 1-35.
14 Katahira, R., Mittal, A., McKinney, K., Ciesielski, P.N., Donohoe, B.S., Black, S.K., Johnson, D.K., Biddy, M.J., Beckham, G.T. 2014. Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sustainable Chemistry & Engineering 2(6): 1364-1376.   DOI
15 Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 50(24): 5438-5466.   DOI
16 Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S. 2009. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering 102(5): 1368-1376.   DOI
17 Lee, S.H., Teramoto, Y., Endo, T. 2010a. Enhancement of enzymatic accessibility by fibrillation of woody biomass using batch-type kneader with twin-screw elements. Bioresource Technology 101(2): 769-774.   DOI
18 Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010b. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology 101(19): 7218-7223.   DOI
19 vWilkes, J.S. 2002. A short history of ionic liquid-from molten salts to neoteric solvents. Green Chemistry 4: 73-80.   DOI
20 Wu, L., Lee, S.H., Endo, T. 2013. Effect of dimethyl sulfoxide on ionic liquid 1-ethyl-3-methylimidazolium acetate pretreatment of eucalyptus wood for enzymatic hydrolysis. Bioresource Technology 140: 90-96.   DOI
21 Nobuta, K., Teramura, H., Ito, H., Hongo, C., Kawaguchi, H., Ogino, C., Kondo, A., Nishino, T. 2016. Characterization of cellulose nanofiber sheets from different refining processes. Cellulose 23(1): 403-414.   DOI
22 Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrils and their applications: High strength nanopapers and polymer composite films. Mokchae Konghak 39(3): 197-205.
23 Marsh, K.N., Boxall, J.A., Lichtenthaler, R. 2004. Room temperature ionic liquids and their mixtures-a review. Fluid Phase Equilibria 219(1): 93-98.   DOI
24 Monshi, A., Foroughi, M.R., Monshi, M.R. 2012. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering 2(3): 154-160.   DOI
25 Olivier-Bourbigou, H., Magna, L., Morvan, D. 2010. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General 373(1-2): 1-56.   DOI
26 Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. Journal of the Korean Wood Science and Technology 43(1): 17-24.   DOI
27 Plechkova, N.V., Seddon, K.R. 2008. Applications of ionic liquids in the chemical industry. Chemical Society Reviews 37(1): 123-150.   DOI
28 Potdar, M.K., Kelso, G.F., Schwarz, L., Zhang, C., Hearn, M.T.W. 2015. Recent developments in chemical synthesis with biocatalysts in ionic liquids. Molecules 20(9): 16788-16816.   DOI
29 Subhedar, P.B., Gogate, P.R. 2014. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry 21(1): 216-225.   DOI
30 Segal, L., Creely, J.J., Martin Jr., A.E., Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29(10): 786-794.   DOI
31 Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H., Rogers, R.D. 2009. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry 11: 646-655.   DOI
32 Sun, N., Liu, H., Sathitsuksanoh, N., Stavila, V., Sawant, M., Bonito, A., Tran, K., George, A., Sale, K.L., Singh, S., Simmons, B.A., Holmes, B.M. 2013. Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels 6(1): 39-52.   DOI
33 Wan, C., Zhou, Y., Li, Y. 2011. Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology 102(10): 6254-6259.   DOI
34 Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60(2): 309-319.   DOI
35 Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Science and Technology 46(1): 393-403.   DOI
36 Charreau, H., Foresti, M.L., Vazquez, A. 2013. Nanocellulose patents trends: A comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Patents on Nanotechnology 7(1): 56-80.   DOI
37 Doherty, T.V., Mora-Pale, M., Foley, S.E., Linhardt, R.J., Dordick, J.S. 2010. Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy, Green Chemistry 12: 1967-1975.   DOI
38 Cheng, G., Varanasi, P., Arora, R., Stavila, V., Simmons, B.A., Kent, M.S., Singh, S. 2012. Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. Journal of Physical Chemistry B 116(33): 10049-10054.   DOI
39 Chirayil, C.J., Mathew, L., Thomas, S. 2014. Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Reviews on Advanced Materials Science 37(1): 20-28.
40 da Silva, A.S., Lee, S.H., Endo, T., Bon, E.P.S. 2011. Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]). Bioresource Technology 102(22): 10505-10509.   DOI
41 Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T. 2010. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 45(1): 1-33.   DOI
42 Endo, T. 2009. Bioethanol production from woods with the aid of nanotechnology. Synthesiology 2(4): 310-320.   DOI
43 Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G., Rogers, R.D. 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 9: 63-69.   DOI