Browse > Article
http://dx.doi.org/10.5658/WOOD.2015.43.1.9

Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers  

Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University)
Lee, Seung-Hwan (College of Forest & Environmental Sciences, Kangwon National University)
Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.43, no.1, 2015 , pp. 9-16 More about this Journal
Abstract
This study was carried out to investigate the effect of delignification on properties of lignocellulose nanofibers (LCNFs) prepared by wet disk-milling (WDM) after steam and ozone oxidation pre-treatments and their nanopaper sheets. Delignification treatment was effective to obtain fine morphology with uniform fiber diameter less than 35 nm without aggregation, and increased the specific surface area (SSA) and filtration time of LCNFs. In particular, SSA and filtration time of the LCNFs prepared by WDM after ozone pretreatment increased 1.5 and 5.4 times after further delignification. Delignification also increased whiteness and decreased the redness of nanopaper sheets. The highest color difference (41.9) before and after the delignification was obtained in LCNFs prepared by WDM after the steam pretreatment. Tensile properties of nanopaper sheets were also increased by further delignification. The highest tensile strength was found to be 142 MPa.
Keywords
lignocellulose nanofiber; microfibrillated cellulose; delignification; wet disk-mill; steam; ozone oxidation; Korean white pine;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahlgren, P.A., Goring, D.A.I. 1971. Removal of wood components during chlorite delignification of black spruce. Canadian Journal of Chemistry. 49(8): 1272-1275.   DOI
2 Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the american Chemical Society. 60(2): 309-319.   DOI
3 Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Science and Technology. 46: 393-403.   DOI
4 Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of The Korean Wood Science and Technology 38(6): 587-601.   DOI   ScienceOn
5 Chun, S.J., Choi, E.S., Lee, E.H., Kim, J.H., Lee, S.Y., Lee, S.Y. 2012. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry. 22: 16618-16626.   DOI   ScienceOn
6 Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews. 110(6): 3479-3500.   DOI
7 Han, E.J., Cho, J.Y. 2005. Color analysis of printed silk with digital textile printing method. Journal of the Korean Society of Design Culture. 11(2): 126-134.
8 Hasanjanzadeh, H., Hedjazi, S., Ashori, A., Mahdavi, S., Yousefi, H. 2014. Effects of hemicellulose pre-extraction and cellulose nanofiber on the properties of rice straw pulp. International Journal of Biological Macromolecules. 68: 198-204.   DOI
9 Hubbell, C.A., Ragauskas, A.J. 2010. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresources Technology. 101: 7410-7415.   DOI
10 Hwang, B.H. 2011. Chemistry of lignin -Synthesis, degradation, utilizations-. Kangwon National University Press. Chuncheon, Republic of Korea. pp. 7-8.
11 Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofibers from domestic platation resources. Journal of The Korean Wood Science and Technology. 40(3): 156-163.   DOI   ScienceOn
12 Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology. 47: 925-937.   DOI   ScienceOn
13 Jang, J.H., Lee, S.H., Febrianto, F., Endo, T., Kim, N.H. 2013. Preparation and characterization of cellulose nanofiber from Betung bamboo obtained by delignification treatment. Daejeon, Republic of Korea, Proceeding of 2013 the Korean Society of Wood Science and Technology Annual Meeting. pp. 102-103.
14 Kumar, R., Hu, F., Hubbell, C.A., Ragauskas, A.J., Wyman, C.E. 2013. Comparison of laboratory delignification methods, their selectivity, and impacts on physicochemical characteristics of cellulosic biomass. Bioresources Technology. 130: 372-381.   DOI
15 Jang, J.H., Lee, S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its applications to polyurethane nanocomposite. Journal of The Korean Wood Science and Technology 42(6): 700-707.   DOI
16 Japanese Standards Association. 1999. Testing method for tensile properties of plastic films & sheets. JIS K 7127 : 1999 (ISO 527-3 : 1995).
17 Jungnikl, K., Paris, O., Fratzl, P., Burgert, I. 2008. The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose. 15(3): 407-418.   DOI
18 Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers. 90: 735-764.   DOI   ScienceOn
19 Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology. 101: 7218-7223.   DOI   ScienceOn
20 Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrilas and their applications: High strength nanopapers and polymer composite films. Journal of The Korean Wood Science and Technology. 39(3): 197-205.   DOI
21 Miura, T., Lee, S.H., Inoue, S., Endo, T. 2012. Improvement of enzymatic saccharification of sugarcane bagasseby dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling. Bioresources Technology. 105: 95-99.   DOI
22 Sun, J.X., Sun, X.F., Sun, R.C., Su, Y.Q. 2004. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers. 56: 195-204.   DOI
23 Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. composites Science and Technology. 71: 1342-1347.   DOI
24 Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. 2014. Lignin valorization: Improving lignin processing in the biorefinery. Science.
25 Sehaqui, H., Liu, A., Zhou, Q., Berglund, L. A. 2010. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structure. Biomacromolecules. 11: 2195-2198.   DOI
26 Wise, L.E., Murphy, M., Addieco, A.A. 1946. Isolation of holocellulose from wood. Paper Trade Journal. 122: 35-43.
27 Xu, P., Donaldson, L., Gergely, Z.R., Staehelin, L.A. 2007. Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Science and Technology. 41: 101-116.   DOI