• Title/Summary/Keyword: lightweight foam concrete

Search Result 59, Processing Time 0.021 seconds

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • You, Jei-Jun;Lee, Han-Seung;Bae, Kyu-Woong;Lee, Sang-Sup;Yeon, Gyu-Bong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.49-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of prefoamed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/㎠ or more compressive strength, when was unit weight 0.8t/㎡. In the case of the same unit weight of concrete, it is influenced by w/c of foam agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufatured with the different factors in mix design and also present optimum mix proportion.

  • PDF

Development of Lightweight Foamed Concrete Using Polymer Foam Agent and its Mechanical Properties (경량기포콘크리트의 개발과 역학적 특성에 관한 연구)

  • 변근주;박상순;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.358-365
    • /
    • 1996
  • Lightweight foamed concrete is a concrete which is lighter than normal concrete by mixing prefoamed foam in cement slurry. The objective of this study are to develop prefoamed optimal lightweight foamed concrete using polymer foam agent and to obtain its mechanical characteristics experimentally. This paper presents extensive test data on young's modulus, poisson's ratio, stress-strain curve, the characteristics of strength of the foamed concrete and also presents the mechanical characteristics of the foamed concrete according to foam sizes.

  • PDF

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.

Evaluation of Compressive Strength of Lightweight Aggregate Concrete using Bottom Ash Aggregates and Air Foam (기포가 혼입된 바텀애시 골재 경량 콘크리트의 압축강도 평가)

  • Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.112-113
    • /
    • 2018
  • The present feasible tests are to develop the lightweight concrete using bottom ash aggregates and performed air foam for applying to sustainable high-insulation panel. The main variables investigated are water-to-binder, foam volume ratio, and curing conditions. Test results showed that the lightweight concrete possessed the compressive strength of 5~9 MPa at the air dry density of 951~1,139 kg/m3.

  • PDF

A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent (광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.49.1-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of preformed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/$\textrm{m}^3$ or more compressive strength, when was unit weight 0.8t/$\textrm{m}^3$. In the can of the same unit weight of concrete, it is influenced by w/c of loan agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufactured with the different factors in mix design and also present optimum mix proportion.

  • PDF

Study on the Optimal Mix Proportions of Lightweight Foam Concrete for Substitution of ALC (ALC 대체를 위한 선발포 경량기포콘크리트의 최적배합 선정 연구)

  • Choi, Sun-Mi;Kim, Beom-Soo;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.199-200
    • /
    • 2023
  • This paper presents a study on the selection of optimal mix proportions for producing lightweight pre-foam concrete as a substitute for Autoclaved Lightweight Concrete (ALC) without the accelerated curing. The study was conducted using a rapid hardening binder made from by-products of the steel industry as the primary raw material. The experimental results established the optimal mix proportions, which included retarder content, water/binder ratio, foam content, and fiber inclusion amount, for the production of lightweight foam concrete. The optimal mix proportion was determined to have a retarder content at the minimum amount required to secure the working time, W/B of 35%, a foam content limited to 65% or less, and a fiber inclusion amount of 0.05% or less.

  • PDF

Development of Lightweight Foamed Concrete Using Polymer Foam Agent (고분자 기포제를 이용한 경량 기포 콘크리트의 개발(I))

  • 변근주;송하원;박상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.165-172
    • /
    • 1997
  • Lightweight foamed concrete is a concrete which is lighter than conventional concree by mixing ptetoamed foam in cement slurry. The objectives of this study are to develop optimal prefoarneti lightweight foamed concrete with high lightness. high flowability and enough strength fol special use of structural application by using the polymer foam agent. By mixing the admixtures such as silica-fume and fly-ash and the industrial by-product such as styrofoam for the purpose of practical use of industrial waste, lightweight foamed concrete shich has better lightness. flowability and strength than the conventional prefoamed lightweight foamed concrete is developed. This paper presents extensive data on characteristics of compressive strength and flowability of the concrete manufactured with the different factors in mix design and also presents optimum mix proportion.

An Experimental Study on the Development of Structural Lightweight Concrete using Foam Agent (기포제를 사용한 구조용 경량 콘크리트의 개발에 관한 실험적 연구)

  • Choi, Min-Cheol;Lee, Han-Seung;Tae, Sung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.241-244
    • /
    • 2005
  • The existing structural lightweight concrete is almost manufactured by using lightweight aggregate. But most of a lightweight aggregate depends on income, it is wholly lacking domestic utilizer. So in this study we investigate the developmental possibility of structural lightweight concrete using only the aggregate of the general concrete and foam agent. As the result of experiments this paper confirmed the possibility of development of structural lightweight concrete which shows compressive strength 210kgf/$cm^{2}$ and specific gravity 1.8 t/$m^{3}$ using only foam agent

  • PDF

Effect of Foam Volume ratio and Curing Temperature on Compressive Strength of Lightweight using Bottom Ash Aggregates (바텀애시 경량골재 콘크리트 압축강도에 대한 기포 혼입률 및 양생온도의 영향)

  • Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.168-169
    • /
    • 2019
  • This study examined the effect of foam volume ratio and curing temperature the air dry density and compressive strength of lightweight concrete using bottom ash. Test results showed that the lightweight concrete possessed the compressive strength of 3.4~22.7 MPa at the air dry density of 1,041~1,583 kg/m3.

  • PDF

Fundamental properties of Lightweight Foamed Concrete by Applying Different Types of Aggregates and Foam Conduction Ratio (골재종류 및 기포도입율 변화에 따른 경량기포 콘크리트의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Jeung, Kwang-Bok;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.132-133
    • /
    • 2014
  • In this study, high volume of industrial by-products including blast furnace slag, recycled aggregate powder and incineration ash have been utilized on the slurry of the foamed lightweight concrete. As to decrease the price of the lightweight foam concrete, mortar based slurry and concrete based slurry has been fixed. As the variation of the foam conduction ratio and aggregates, the foam ratio and compressive strength has been tested. Results showed that using recycled aggregates in the slurry showed better effect than using natural aggregates due to the alkali properties of the recycled aggregates could activate the potential hydraulic properties of the blast furnace slag. Consider about the low price of the recycled aggregates, it could be identified that using recycled aggregates in high volume blast furnace slag blended lightweight concrete showed better compressive strength than natural aggregates.

  • PDF