• Title/Summary/Keyword: light-weight concrete

Search Result 272, Processing Time 0.022 seconds

An Experimental Study on the Insulation Property of Light-Weight Foamed Concrete according to Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 단열특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Sun, Joung-Soo;Lee, Jung-Goo;Choi, Duck -Jin;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • Recently, use of light-weight panel is increasing in building. Styrofoam sandwich panel is inexpensive and it is excellent in insulation ability and constructability. But styrofoam of panel inside is low ignition point. Consequently, when panel is fired, it is occur in poisonous gas. On the other hand, light-weight foamed concrete is excellent in insulation ability, fire resistance due to inner pore. Properties of light-weight concrete is influenced by foaming agent type. Accordingly, this study investigate in insulation property of according to foaming agent type in order to using light-weight foamed concrete instead of styrofoam. As a results, Non-heating zone temperature of light-weight foamed concrete of using AP, FP are lower than light-weight foamed concrete of using AES. Light-weight foamed concrete of using AES, FP are satisfied with fire performance of two hours at foam ratio 50, 100. Light-weight foamed concrete of using AP is satisfied with fire performance of two hours at AP ratio 0.1, 0.15. Insulation property is better closed pore by made AP, FP than open pore by made AES.

  • PDF

Properties of High Strength Lightweight Self-Compacting Concrete (고강도 경량 자기충전콘크리트의 성능평가)

  • 최연왕;문대중;안성일;최욱;조선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.413-416
    • /
    • 2003
  • Experimental tests on the high strength self-compacting concrete with light-weight fine aggregate and light-weight coarse aggregate(LHSSC) were performed with slump-flow, reaching time to the slump-flow of 500mm, V-funnel dropping time and U-box difference level and compressive strength. LHSCC with light-weight fine aggregate of 75% and light-weight coarse aggregate of 100% was only satisfied with the property conditions of second self-compacting concrete(SCC), like as flowability, resistance to segregation and filling ability. The 28-day compressive strength of LHSCC indicated above 300kgf/$\textrm{cm}^2$ in all concrete mixtures, and it was increased to increase the replacement ratio of light-weight fine aggregate or to decrease the replacement ratio of light-weight coarse aggregate. Therefore, for satisfying the properties of fresh SCC and hardened concrete with above 350kgf/$\textrm{cm}^2$, it would expected that the replacement ratio of light-weight fine aggregate and light-weight coarse aggregate will be determined with 50~75% and 25~50%, respectively.

  • PDF

Relation Between Water Content Ratio and Fire Performance of Class 1 Structural Light Weight Aggregate Concrete (1종 경량골재콘크리트의 함수율과 내화특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • Structural light weight aggregate concrete are made with both coarse and fine light weight aggregates, but it is common with the high strength concrete to replace all or part with normal weight sand be called class 1 structural light weight aggregate concrete. Fire resistance of structural light weight aggregate concrete are determined by properties of high water content ratio and explosive spalling. Especially, structural light weight aggregate concrete is occurred serious fire performance deterioration by explosive spalling stem from thermal stress and water vapor pressure. This study is concerned with experimentally investigating fire resistance of class 1 structural light weight concrete. From the test result, class 1 structural light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

A Study on the Development of the Artigicial Eco Light-Weight Aggregate using EAF-Dust and Application of the Concrete (전기로제강 분진의 복합안정화 처리를 통한 에코이공경량골재의 개발 및 콘크리트 적용 연구)

  • Lee, Jin-Woo;Kim, Kyung-Min;Jung, Chul-Hee;Bae, Yeoun-Ki;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.149-152
    • /
    • 2005
  • To make artificial light-weight aggregate with EAF-dust and estimate ability to apply to concrete, characteristics of the aggregate were considered in density, weight of unit volume, fineness modulus and so on. And then it was executed to experiments of the concrete mixed with the light-weight aggregate. As it was results that artificial light-weight aggregate with EAF-dust was heavier and more watertight than with only clay, concrete weight of unit volume was heavier than with expended clay aggregate. But it was regarded that concrete with EAF-dust artificial aggregate was able to field application as light-weight concrete because concrete of the weight of unit volume was lighter and compress strength and workability were similar to normal concrete.

  • PDF

The Experimental Study on improvement the pump sending of the light weight concrete using the light weight aggregate (경량골재를 사용한 경량콘크리트의 펌프압송 성능향상에 관한 실험적 연구)

  • Park Dae-Oh;Seo Chee-Ho;Ji Suk-Won;Lee Jin-Woo;Shin Sang-Tae;Jee Suk-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.23-26
    • /
    • 2006
  • The study about the concrete to use recently a light weight aggregate, processed actively. And concrete pumping with a high pressure pump has been popularized, the mechanical development, such as high pressure pumps or pipes, is progressing rapidly. Concrete placing by pumping has the advantage of the reduction of the construction period with workability, easiness of work and the increase of placing, but the quality variation of concrete is caused by pumping is seldom considered, including the increase of the pipe length by high-rising and large-sizing, there by the loss of the unit quantity of water, with pumpability or workability deteriorated. In this research, we will compare and analyze before pumping and after pumping samples of ready-mixed light weight concrete. The result of study as follow. The case of a light weight concrete which the low slump is more decrement compared with high slump light weight concrete in after pumping samples. After pumping the water by pressure of a pump was absorbed to the aggregate inside, and it showed an increase of compression strength about $5{\sim}20%$.

  • PDF

A Study on the Resistance for Frost Damage of Polypropylene Fiber Reinforced Light Weight Polymer Cement Concrete (폴리프로필렌섬유보강 경량 폴리머 시멘트 콘크리트의 내동해성에 관한 연구)

  • 소형석;소승영;소양섭;박종호;탁재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.89-92
    • /
    • 1995
  • For the development of lilght weight cement concrete with high durability, this study used perlite and paper sludge ash by the light weight material, and polypropylene fiber by the reinforcment, and poly-acrylic ester emulsion by the matrix improvement. According to the increasing mixture ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement concrete were showed high resistance for frost damage.

  • PDF

A Study of light Weight Porous Concrete Using Meta-kaolin (경량기포콘크리트에 고령토의 첨가효과에 관한 연구)

  • Ganbileg, Gayabazar;Kong, Kyoung-Rok;Kang, Heon-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.905-908
    • /
    • 2006
  • In this study examines physical and mechanical properties the use of domestic low grade meta-kaolin in light weight porous concrete. For this purpose light weight porous concrete incorporating low grade meta-kaolin admixture, was tested for tensile strength and acoustic characteristics. Checking tensile strength of cement and low grade meta-kaolin mixture was used to determine the optimum mix proportion of the low grade meta-kaolin admixture. In this paper sound absorbing material has been investigated by using the light weight porous concrete.

  • PDF

A Experimental Study on the Freezing and Thawing of High-Strength Light Weight Aggregates Concrete (고강도 경량골재콘크리트의 동결융해에 대한 실험적 연구)

  • 박정권;최세규;한상묵;김생빈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.155-161
    • /
    • 1997
  • This Expriment is performed to describe the properties of the freezing-thawing and to find the method to enhance the freezing-thawing resistance of the high strength light weight aggregates concrete. For this purpose, we made 8 kinds of specimen of concrete mold. The light weight coarse aggregate concrete which contained AE was appeared in good condition and its durability index was more than 90% by the buffer action which owing to entained air. The light weight aggregates concrete which admixture of silca fume, was appeared that the durability index was 46.74% in spite of its high strength. I might conclude that the most important factor for freezing-thawing resistance of high strength light weight aggregate concrete is the entrained air.

  • PDF

A Study on the Heat Resistance of Light-Weight Polymer Concrete Composites (경량 폴리머 콘크리트 복합체의 내열성능에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • In recent years, the light-weight aggregate has widely been used to reduce the weight of construction structures, and to achieve the thermal insulation of building structures. The purpose of this study is to evaluate the heat resistance of polymer concrete composites with light-weight aggregate made by binders as resin and cement with polymer dispersion. The light-weight polymer concrete composites are prepared with various conditions such as binder content, filler content, void-filling ratio, light-weight aggregate content and polymer-cement ratio, and tested for heat resistant test, and measured the weight reducing ratio, strengths and exhaustion content of gas such as CO, NO and $SO_2$. From the test results, the weight reducing ratio of light weight polymer concrete using UP binder after heat resistance test increase with an increase in the UP content irrespective of the filler content. The weight reducing ratio of polymer cement concrete is considerably smaller than that of UP concrete. In general, the strengths after heat resistance of polymer concrete composites are reduced about 40 to 65% compared with those before test. The exhausted quantity of CO, NO and $SO_2$ gases in polymer concrete composites is less than EPS(Expanded poly styrene). From the this study, it is confirmed that the many types gases discharge according to binder type of polymer concrete composites, its amount is controlled by selection of the binder type and mix proportions.

Study of Light Weight Concrete Using Aggregate of Waste Plastic Materials (폐플라스틱 제품의 골재를 이용한 경량 콘크리트에 관한 연구)

  • 한상묵;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.7-12
    • /
    • 2003
  • In scrapped material field, about ten millions ton of waste plastic materials are produced in korea. However recycling rate of waste plastic materials have above 25%. Therefore, it is urgently needed that they are used as recycled materials in order to prevent environment pollution and grain economic profits. In this paper, physical and mechanical properties of light weight concrete using waste plastic materials for aggregates are described in order to develop a light weight concrete with the aggregate made from waste plastic goods, it was carried out many experiments on mix proportion and strength. According to the experimental results, high-strength mortar was necessary to make light weight concrete using aggregate of waste plastic materials. Especially, considering the side of recycling of plastic wastes, it is recommended that recycled aggregates made from waste plastic materials is applied to light weight concrete.

  • PDF