• Title/Summary/Keyword: ligand interaction

Search Result 231, Processing Time 0.024 seconds

Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versus Apical (Y2L2Pt···L') Interaction

  • Park, Jong-Keun;Kim, Bong-Gon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1405-1417
    • /
    • 2006
  • The geometrical structures, potential energy surfaces, and energetics for the ligand exchange reactions of tetracoordinated platinum $(PtY_2L_2\;:\;Y,\;L=Cl^-,\;OH^-,\;OH_2,\;NH_3)$ complexes in the ligand-solvent interaction systems were investigated using the ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The potential energy surfaces for the ligand exchange reactions used for the conversions of $(PtCl_4\;+\;H_2O)^{^\ast_\ast}\;to\;[PtCl_3(H_2O)\;+\;Cl^-]$ and $[Pt(NH_3)_2Cl_2\;+\;H_2O]$$[Pt(NH_3)_2Cl_2\;+\;H_2O]$ to $[Pt(NH_3)_2Cl(H_2O)\;+\;Cl^-] $ were investigated in detail. For these two exchange reactions, the transition states $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime])^{^\ast_\ast} $ correspond to complexes such as $(PtCl_4{\cdot}{\cdot}{\cdot}H_2O)^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$, respectively. In the transition state, $([PtCl_4{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]]^{^\ast_\ast})$ have a kind of 6-membered $(Pt-Cl{\cdot}{\cdot}{\cdot}HOH{\cdot}{\cdot}{\cdot}Cl)$ and $(Pt-OH{\cdot}{\cdot}{\cdot}Cl{\cdot}{\cdot}{\cdot}HN)$ interactions, respectively, wherein a central Pt(II) metal directly combines with a leaving $Cl^-$ and an entering $H_2O$. Simultaneously, the entering $H_2O$ interacts with a leaving $Cl^-$. No vertical one metal-ligand interactions $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime]) $ are found at the axial positions of the square planar $(PtY_2L_2)$ complexes, which were formed via a vertically associative mechanism leading to $D_{3h}$ or $C_{2v}$-transition state symmetry. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes are also examined quantitatively. Schematic diagrams for the dissociation reactions of {PtCl4(H2O)n(n=2,4)} into {$PtCl_3(H_2O)_{(n-2)}\;+\;Cl^-(H_2O)_2$} and the binding energies {$PtCl_4(H_2O)_n$(n = 1-5)} of $PtCl_4$ with water molecules are drawn.

Interaction between Parasitophorous Vacuolar Membrane-associated GRA3 and Calcium Modulating Ligand of Host Cell Endoplasmic Reticulum in the Parasitism of Toxoplasma gondii

  • Kim, Ji-Yeon;Ahn, Hye-Jin;Ryu, Kyung-Ju;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.

Production rind Characterization of the Polyclonal Anti-peptide Antibody for $\beta$-adrenergic Receptor

  • Kim, Hee-Jin;Shin, Chan-Young;Sang Bong lee;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.2 no.4
    • /
    • pp.303-309
    • /
    • 1994
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. Two kinds of antibodies could be produced, one is from synthetic peptides and the other from proteins such as purified receptor. Anti-peptide antibodies gave some advantages; epitope is evident and also receptor purification in quantity is not prerequisite. It can be also applied to the study of receptor structure-activity relationship. The purpose of the present study was 1) to produce and characterize a polyclonal antibody against a synthetic $\beta$2-adrenergic receptor peptide(Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-Ile-Asp-Val-Leu) and 2) to determine the effects of this antibody on the $\beta$-adrenergic receptor ligand interaction. The peptide sequence contains an amino acid residue such as Asp-113 which was identified as one of important component for receptor-ligand interaction in site-directed mutagenesis studies. Production of antibody was performed by immunization of rabbits through popliteal lymph node with the peptide coupled with Keyhole Limpet Hemocyanin (KLH). The titer of antibody against this peptide was 1 : 1000. The anti-peptide antibody was able to detect a 67 kDa protein band in western blot corresponding to the molecular weight of the $\beta$-adrenergic receptor in partially purified receptor fraction derived from guinea pig lung. The antisera inhibited the specific binding of [$^3$H]dihydroalprenolol to $\beta$-adrenergic receptor in a concentration-dependent manner. The results from this study suggest that the peptide sequence selected in the present study is important for the receptor ligand interaction.

  • PDF

New Cryptand Complexes of Lanthanides(Ⅲ) and Dioxouranium(Ⅵ) Nitrates

  • Oh-Jin Jung;Chil-Nam Choi;Hak-Jin Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 1991
  • The following new cryptand 221 complexes of lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate have been synthesized: $(Ln(C_{16}H_{32}N_2O_5)(H_2O)_2(NO_3)_3\ and \((UO_2)_2(C_{16}H_{32}N_2O_5)(H_2O)_4(NO_3)_4$. These complexes have been identified by elemental analysis, moisture titration, conductivity measurements and various spectroscopic techniques. The proton and carbon-13 NMR as well as calorimetric measurements were used to study the interaction of cryptand 221 with La(Ⅲ), Pr(Ⅲ ), Ho(Ⅲ) and $UO_2(Ⅱ)$ ions in nonaqueous solvents. The bands of metal-oxygen atoms, metal-nitrogen atoms and O-U-O in the IR spectra shift upon complexation to lower frequencies, and the vibrational spectra ({\delta}NMN$) of metal-amide complexes in the crystalline state exhibit lattice vibrations below 300 $cm^{-1}$. The NMR spectra of the lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate complexes in nonaqueous solvents are quite different, indicating that the ligand exists in different conformation, and also the $^1H$ and $^{13}C-NMR$ studies indicated that the nitrogen atom of the ring has greater affinity to metal ions than does the oxygen atom, and the planalities of the ring are lost by complexation with metal ions. Calorimetric measurements show that cryptand 221 forms more stable complexes with $La^{3+}$ and $Pr^{3+}$ ions than with $UO^{22+}$ ion, and $La^{3+}/Pr^{3+}$ and $UO^{22+}/Pr^{3+}$ selectivity depends on the solvents. These changes on the stabilities are dependent on the basicity of the ligand and the size of the metal ions. The absorption band (230-260 nm) of the complex which arises from the direct interaction of macrocyclic donor atoms with the metal ion is due to n-{\delta}*$ transition and also that (640-675 nm) of $UO^{22+}$-cryptand 221 complex, which arises from interaction between two-dioxouranium(Ⅵ) ions in being out of cavity of the ligand ring is due to d-d* transition.

Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress

  • Yoo, Hyeijung;Kim, Hyun Jung;Yang, Soo Hyun;Son, Gi Hoon;Gim, Jeong-An;Lee, Hyun Woo;Kim, Hyun
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.306-316
    • /
    • 2022
  • Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.

Interaction between IGFBP-5 and TNFR1

  • Kim, Eun-Jung;Jeong, Mi-Suk;Hwang, Jae-Ryoung;Lee, Je-Ho;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2019-2024
    • /
    • 2010
  • Insulin-like growth factor binding protein 5 (IGFBP-5) plays an important role in controlling cell survival, differentiation and apoptosis. Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor 1 (TNFR1). To determine whether IGFBP-5 and TNFR1 interact as members of the same apoptosis pathway, recombinant IGFBP-5 and TNFR1 were isolated. The expression and purification of the full-length TNFR1 and truncated IGFBP-5 proteins were successfully performed in E. coli. The binding of both IGFBP-5 and TNFR1 proteins was detected by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, electron microscopy, and size-exclusion column (SEC) chromatography. IGFBP-5 indeed binds to TNFR1 with an apparent $K_D$ of 9 nM. After measuring the fluorescence emission spectra of purified IGFBP-5 and TNFR1, it was found that the tight interaction of these proteins is accompanied by significant conformational changes of one or both. These results indicate that IGFBP-5 acts potently as a novel ligand for TNFR1.

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

Fragment Molecular Orbital Method: Application to Protein-Ligand Binding

  • Watanabe, Hirofumi;Tanaka, Shigenori
    • Interdisciplinary Bio Central
    • /
    • v.2 no.2
    • /
    • pp.6.1-6.5
    • /
    • 2010
  • Fragment molecular orbital (FMO) method provides a novel tool for ab initio calculations of large biomolecules. This method overcomes the size limitation difficulties in conventional molecular orbital methods and has several advantages compared to classical force field approaches. While there are many features in this method, we here focus on explaining the issues related to protein-ligand binding: FMO method provides useful interaction-analysis tools such as IFIE, CAFI and FILM. FMO calculations can provide not only binding energies, which are well correlated with experimental binding affinity, but also QSAR descriptors. In addition, FMO-derived charges improve the descriptions of electrostatic properties and the correlations between docking scores and experimental binding affinities. These calculations can be performed by the ABINIT-MPX program and the calculation results can be visualized by its proper BioStation Viewer. The acceleration of FMO calculations on various computer facilities is ongoing, and we are also developing methods to deal with cytochrome P450, which belongs to the family of drug metabolic enzymes.

Optical Resolution of Dansyl Amino Acids with Addition of Benzyl-L-Hydroxyproline Copper(II) Chelate by High Performance Liquid Chromatography

  • Sun Haing Lee;Tae Sub Oh;Sang Hyun Bak
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.491-495
    • /
    • 1989
  • Resolution of enantiomers of DNS-amino acids has been achieved by a reversed phase liquid chromatography with an addition of a copper(Ⅱ) complex of N-benzyl-L-hydroxyproline to the mobile phase. N-Benzyl-L-hydroxyproline was prepared and used as a chiral ligand of copper(Ⅱ) chelate for the optical resolution. The pH and the concentration of copper(Ⅱ) chelate, organic solvent, and buffer agent in the mobile phase all affect the optical resolutions of dansyl amino acids. The elution orders between D and L-DNS-amino acids were different depending on the structure of the side chain of the amino acids. The retention mechanism for the chiral separation of the dansyl amino acids can be illustrated by the equilibrium of ligand exchange and by hydrophobic interaction with $C_{18}$ stationary phase. The chiral separation can be illustrated with cis and trans effect of the ligand exchange reaction.